Browsing by Author "Myszkowski, Karol"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Consistent Filtering of Videos and Dense Light-Fields Without Optic-Flow(The Eurographics Association, 2019) Shekhar, Sumit; Semmo, Amir; Trapp, Matthias; Tursun, Okan; Pasewaldt, Sebastian; Myszkowski, Karol; Döllner, Jürgen; Schulz, Hans-Jörg and Teschner, Matthias and Wimmer, MichaelA convenient post-production video processing approach is to apply image filters on a per-frame basis. This allows the flexibility of extending image filters-originally designed for still images-to videos. However, per-image filtering may lead to temporal inconsistencies perceived as unpleasant flickering artifacts, which is also the case for dense light-fields due to angular inconsistencies. In this work, we present a method for consistent filtering of videos and dense light-fields that addresses these problems. Our assumption is that inconsistencies-due to per-image filtering-are represented as noise across the image sequence. We thus perform denoising across the filtered image sequence and combine per-image filtered results with their denoised versions. At this, we use saliency based optimization weights to produce a consistent output while preserving the details simultaneously. To control the degree-of-consistency in the final output, we implemented our approach in an interactive real-time processing framework. Unlike state-of-the-art inconsistency removal techniques, our approach does not rely on optic-flow for enforcing coherence. Comparisons and a qualitative evaluation indicate that our method provides better results over state-of-the-art approaches for certain types of filters and applications.Item EUROGRAPHICS 2023: CGF 42-2 Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2023) Myszkowski, Karol; Niessner, Matthias; Myszkowski, Karol; Niessner, MatthiasItem Learning a Self-supervised Tone Mapping Operator via Feature Contrast Masking Loss(The Eurographics Association and John Wiley & Sons Ltd., 2022) Wang, Chao; Chen, Bin; Seidel, Hans-Peter; Myszkowski, Karol; Serrano, Ana; Chaine, Raphaëlle; Kim, Min H.High Dynamic Range (HDR) content is becoming ubiquitous due to the rapid development of capture technologies. Nevertheless, the dynamic range of common display devices is still limited, therefore tone mapping (TM) remains a key challenge for image visualization. Recent work has demonstrated that neural networks can achieve remarkable performance in this task when compared to traditional methods, however, the quality of the results of these learning-based methods is limited by the training data. Most existing works use as training set a curated selection of best-performing results from existing traditional tone mapping operators (often guided by a quality metric), therefore, the quality of newly generated results is fundamentally limited by the performance of such operators. This quality might be even further limited by the pool of HDR content that is used for training. In this work we propose a learning-based self-supervised tone mapping operator that is trained at test time specifically for each HDR image and does not need any data labeling. The key novelty of our approach is a carefully designed loss function built upon fundamental knowledge on contrast perception that allows for directly comparing the content in the HDR and tone mapped images. We achieve this goal by reformulating classic VGG feature maps into feature contrast maps that normalize local feature differences by their average magnitude in a local neighborhood, allowing our loss to account for contrast masking effects. We perform extensive ablation studies and exploration of parameters and demonstrate that our solution outperforms existing approaches with a single set of fixed parameters, as confirmed by both objective and subjective metrics.Item Learning to Predict Image-based Rendering Artifacts with Respect to a Hidden Reference Image(The Eurographics Association and John Wiley & Sons Ltd., 2019) Bemana, Mojtaba; Keinert, Joachim; Myszkowski, Karol; Bätz, Michel; Ziegler, Matthias; Seidel, Hans-Peter; Ritschel, Tobias; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonImage metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.Item Neural Acceleration of Scattering-Aware Color 3D Printing(The Eurographics Association and John Wiley & Sons Ltd., 2021) Rittig, Tobias; Sumin, Denis; Babaei, Vahid; Didyk, Piotr; Voloboy, Alexey; Wilkie, Alexander; Bickel, Bernd; Myszkowski, Karol; Weyrich, Tim; Krivánek, Jaroslav; Mitra, Niloy and Viola, IvanWith the wider availability of full-color 3D printers, color-accurate 3D-print preparation has received increased attention. A key challenge lies in the inherent translucency of commonly used print materials that blurs out details of the color texture. Previous work tries to compensate for these scattering effects through strategic assignment of colored primary materials to printer voxels. To date, the highest-quality approach uses iterative optimization that relies on computationally expensive Monte Carlo light transport simulation to predict the surface appearance from subsurface scattering within a given print material distribution; that optimization, however, takes in the order of days on a single machine. In our work, we dramatically speed up the process by replacing the light transport simulation with a data-driven approach. Leveraging a deep neural network to predict the scattering within a highly heterogeneous medium, our method performs around two orders of magnitude faster than Monte Carlo rendering while yielding optimization results of similar quality level. The network is based on an established method from atmospheric cloud rendering, adapted to our domain and extended by a physically motivated weight sharing scheme that substantially reduces the network size. We analyze its performance in an end-to-end print preparation pipeline and compare quality and runtime to alternative approaches, and demonstrate its generalization to unseen geometry and material values. This for the first time enables full heterogenous material optimization for 3D-print preparation within time frames in the order of the actual printing time.Item Selecting Texture Resolution Using a Task-specific Visibility Metric(The Eurographics Association and John Wiley & Sons Ltd., 2019) Wolski, Krzysztof; Giunchi, Daniele; Kinuwaki, Shinichi; Didyk, Piotr; Myszkowski, Karol; Steed, Anthony; Mantiuk, Rafal K.; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonIn real-time rendering, the appearance of scenes is greatly affected by the quality and resolution of the textures used for image synthesis. At the same time, the size of textures determines the performance and the memory requirements of rendering. As a result, finding the optimal texture resolution is critical, but also a non-trivial task since the visibility of texture imperfections depends on underlying geometry, illumination, interactions between several texture maps, and viewing positions. Ideally, we would like to automate the task with a visibility metric, which could predict the optimal texture resolution. To maximize the performance of such a metric, it should be trained on a given task. This, however, requires sufficient user data which is often difficult to obtain. To address this problem, we develop a procedure for training an image visibility metric for a specific task while reducing the effort required to collect new data. The procedure involves generating a large dataset using an existing visibility metric followed by refining that dataset with the help of an efficient perceptual experiment. Then, such a refined dataset is used to retune the metric. This way, we augment sparse perceptual data to a large number of per-pixel annotated visibility maps which serve as the training data for application-specific visibility metrics. While our approach is general and can be potentially applied for different image distortions, we demonstrate an application in a game-engine where we optimize the resolution of various textures, such as albedo and normal maps.Item Video Frame Interpolation for High Dynamic Range Sequences Captured with Dual-exposure Sensors(The Eurographics Association and John Wiley & Sons Ltd., 2023) Cogalan, Ugur; Bemana, Mojtaba; Seidel, Hans-Peter; Myszkowski, Karol; Myszkowski, Karol; Niessner, MatthiasVideo frame interpolation (VFI) enables many important applications such as slow motion playback and frame rate conversion. However, one major challenge in using VFI is accurately handling high dynamic range (HDR) scenes with complex motion. To this end, we explore the possible advantages of dual-exposure sensors that readily provide sharp short and blurry long exposures that are spatially registered and whose ends are temporally aligned. This way, motion blur registers temporally continuous information on the scene motion that, combined with the sharp reference, enables more precise motion sampling within a single camera shot. We demonstrate that this facilitates a more complex motion reconstruction in the VFI task, as well as HDR frame reconstruction that so far has been considered only for the originally captured frames, not in-between interpolated frames. We design a neural network trained in these tasks that clearly outperforms existing solutions. We also propose a metric for scene motion complexity that provides important insights into the performance of VFI methods at test time.