Browsing by Author "Miksch, Silvia"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Filipov, Velitchko; Arleo, Alessio; Miksch, Silvia; Hauser, Helwig and Alliez, PierreNetworks are abstract and ubiquitous data structures, defined as a set of data points and relationships between them. Network visualization provides meaningful representations of these data, supporting researchers in understanding the connections, gathering insights, and detecting and identifying unexpected patterns. Research in this field is focusing on increasingly challenging problems, such as visualizing dynamic, complex, multivariate, and geospatial networked data. This ever‐growing, and widely varied, body of research led to several surveys being published, each covering one or more disciplines of network visualization. Despite this effort, the variety and complexity of this research represents an obstacle when surveying the domain and building a comprehensive overview of the literature. Furthermore, there exists a lack of clarification and uniformity between the terminology used in each of the surveys, which requires further effort when mapping and categorizing the plethora of different visualization techniques and approaches. In this paper, we aim at providing researchers and practitioners alike with a “roadmap” detailing the current research trends in the field of network visualization. We design our contribution as a meta‐survey where we discuss, summarize, and categorize recent surveys and task taxonomies published in the context of network visualization. We identify more and less saturated disciplines of research and consolidate the terminology used in the surveyed literature. We also survey the available task taxonomies, providing a comprehensive analysis of their varying support to each network visualization discipline and by establishing and discussing a classification for the individual tasks. With this combined analysis of surveys and task taxonomies, we provide an overarching structure of the field, from which we extrapolate the current state of research and promising directions for future work.Item CV3: Visual Exploration, Assessment, and Comparison of CVs(The Eurographics Association and John Wiley & Sons Ltd., 2019) Filipov, Velitchko; Arleo, Alessio; Federico, Paolo; Miksch, Silvia; Gleicher, Michael and Viola, Ivan and Leitte, HeikeThe Curriculum Vitae (CV, also referred to as ''résumé'') is an established representation of a person's academic and professional history. A typical CV is comprised of multiple sections associated with spatio-temporal, nominal, hierarchical, and ordinal data. The main task of a recruiter is, given a job application with specific requirements, to compare and assess CVs in order to build a short list of promising candidates to interview. Commonly, this is done by viewing CVs in a side-by-side fashion. This becomes challenging when comparing more than two CVs, because the reader is required to switch attention between them. Furthermore, there is no guarantee that the CVs are structured similarly, thus making the overview cluttered and significantly slowing down the comparison process. In order to address these challenges, in this paper we propose ''CV3'', an interactive exploration environment offering users a new way to explore, assess, and compare multiple CVs, to suggest suitable candidates for specific job requirements. We validate our system by means of domain expert feedback whose results highlight both the efficacy of our approach and its limitations. We learned that CV3 eases the overall burden of recruiters thereby assisting them in the selection process.Item Exploring Time Series Segmentations Using Uncertainty and Focus+Context Techniques(The Eurographics Association, 2020) Bors, Christian; Eichner, Christian; Miksch, Silvia; Tominski, Christian; Schumann, Heidrun; Gschwandtner, Theresia; Kerren, Andreas and Garth, Christoph and Marai, G. ElisabetaTime series segmentation is employed in various domains and continues to be a relevant topic of research. A segmentation pipeline is composed of different steps involving several parameterizable algorithms. Existing Visual Analytics approaches can help experts determine appropriate parameterizations and corresponding segmentation results for a given dataset. However, the results may also be afflicted with different types of uncertainties. Hence, experts face the additional challenge of understanding the reliability of multiple alternative the segmentation results. So far, the influence of uncertainties in the context of time series segmentation could not be investigated. We present an uncertainty-aware exploration approach for analyzing large sets of multivariate time series segmentations. The approach features an overview of uncertainties and time series segmentations, while detailed exploration is facilitated by (1) a lens-based focus+context technique and (2) uncertainty-based re-arrangement. The suitability of our uncertainty-aware design was evaluated in a quantitative user study, which resulted in interesting findings of general validity.Item A Methodology for Task-Driven Guidance Design(The Eurographics Association, 2023) Pérez-Messina, Ignacio; Ceneda, Davide; Miksch, Silvia; Angelini, Marco; El-Assady, MennatallahMixed-initiative Visual Analytics (VA) systems are becoming increasingly important; however, the design of such systems still needs to be formulated. We present a methodology to aid and structure the design of guidance for mixed-initiative VA systems consisting of four steps: (1) defining the target of analysis, (2) identifying the user search tasks, (3) describing the system guidance tasks, and (4) specifying which and when guidance is provided. In summary, it specifies a space of possible user tasks and then maps it to the corresponding space of guidance tasks, using recent VA task typologies for guidance and visualizations. We illustrate these steps through a case study in a real-world model-building task involving decision-making with unevenlyspaced time-oriented data. Our methodology's goal is to enrich existing VA systems with guidance, being its output a structured description of a complex guidance task schema.Item Multi-Ensemble Visual Analytics via Fuzzy Sets(The Eurographics Association, 2023) Piccolotto, Nikolaus; Bögl, Markus; Miksch, Silvia; Angelini, Marco; El-Assady, MennatallahAnalysis of ensemble datasets, i.e., collections of complex elements such as geochemical maps, is widespread in science and industry. The elements' complexity arises from the data they capture, which are often multivariate or spatio-temporal. We speak of multi-ensemble datasets when the analysis pertains to multiple ensembles. While many visualization approaches were suggested for ensemble datasets, multi-ensemble datasets remain comparatively underexplored. Our years-long collaboration with statisticians and geochemists taught us that they frame many questions about multi-ensemble data as set operations. E.g., what are the most common members (intersection of ensembles), or what features exist in one member but not another (difference of members)? As classical crisp set relations cannot account for the elements' complexity, we propose to model multi-ensembles as fuzzy relations. We provide examples of fuzzy set-based queries on a multi-ensemble of geochemical maps and integrate this approach into an existing ensemble visualization pipeline. We evaluated two visualizations obtained by applying this pipeline with experts in geochemistry and statistics. The experts confirmed known information and got directions for further research, which is one Visual Analytics (VA) goal. Hence, our proposal is highly promising for an interactive VA approach.Item A Multilevel Approach for Event-Based Dynamic Graph Drawing(The Eurographics Association, 2021) Arleo, Alessio; Miksch, Silvia; Archambault, Daniel; Agus, Marco and Garth, Christoph and Kerren, AndreasThe timeslice is the predominant method for drawing and visualizing dynamic graphs. However, when nodes and edges have real coordinates along the time axis, it becomes difficult to organize them into discrete timeslices, without a loss of temporal information due to projection. Event-based dynamic graph drawing rejects the notion of a timeslice and allows each node and edge to have its own real-valued time coordinate. Nodes are represented as trajectories of adaptive complexity that are drawn directly in the three-dimensional space-time cube (2D + t). Existing work has demonstrated clear advantages for this approach, but these advantages come at a running time cost. In response to this scalability issue, we present MultiDynNoS, the first multilevel approach for event-based dynamic graph drawing. We consider three operators for coarsening and placement, inspired by Walshaw, GRIP, and FM3, which we couple with an event-based graph drawing algorithm. We evaluate our approach on a selection of real graphs, showing that it outperforms timeslice-based and existing event-based techniques.Item A Typology of Guidance Tasks in Mixed-Initiative Visual Analytics Environments(The Eurographics Association and John Wiley & Sons Ltd., 2022) Pérez-Messina, Ignacio; Ceneda, Davide; El-Assady, Mennatallah; Miksch, Silvia; Sperrle, Fabian; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasGuidance has been proposed as a conceptual framework to understand how mixed-initiative visual analytics approaches can actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is still not completely clear how they could be supported with guidance and how such support could influence the progress of the task itself. Our observation is that there is a research gap in understanding the effect of guidance on the analytical discourse, in particular, for the knowledge generation in mixed-initiative approaches. As a consequence, guidance in a visual analytics environment is usually indistinguishable from common visualization features, making user responses challenging to predict and measure. To address these issues, we take a system perspective to propose the notion of guidance tasks and we present it as a typology closely aligned to established user task typologies. We derived the proposed typology directly from a model of guidance in the knowledge generation process and illustrate its implications for guidance design. By discussing three case studies, we show how our typology can be applied to analyze existing guidance systems. We argue that without a clear consideration of the system perspective, the analysis of tasks in mixed-initiative approaches is incomplete. Finally, by analyzing matchings of user and guidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.Item VisMiFlow: Visual Analytics to Support Citizen Migration Understanding Over Time and Space(The Eurographics Association, 2021) Scheidl, Andreas; Leite, Roger A.; Miksch, Silvia; Agus, Marco and Garth, Christoph and Kerren, AndreasMultivariate networks are complex data structures, which are ubiquitous in many application domains. Driven by a real-world problem, namely the movement behavior of citizens in Vienna, we designed and implemented a Visual Analytics (VA) approach to ease citizen behavior analyses over time and space. We used a dataset of citizens' movement behavior to, from, or within Vienna from 2007 to 2018, provided by Vienna's city. To tackle the complexity of time, space, and other moving people's attributes, we follow a data-user-tasks design approach to support urban developers. We qualitatively evaluated our VA approach with five experts coming from the field of VA and one non-expert. The evaluation illustrated the importance of task-specific visualization and interaction techniques to support users' decision-making and insights. We elaborate on our findings and suggest potential future works to the field.Item Visual Parameter Selection for Spatial Blind Source Separation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Piccolotto, Nikolaus; Bögl, Markus; Muehlmann, Christoph; Nordhausen, Klaus; Filzmoser, Peter; Miksch, Silvia; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasAnalysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are integral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.Item Visual Parameter Space Exploration in Time and Space(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Piccolotto, Nikolaus; Bögl, Markus; Miksch, Silvia; Hauser, Helwig and Alliez, PierreComputational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.