Browsing by Author "Cignoni, Paolo"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Another Brick in the Wall: Improving the Assisted Semantic Segmentation of Masonry Walls(The Eurographics Association, 2020) Pavoni, Gaia; Giuliani, Francesca; Falco, Anna De; Corsini, Massimiliano; Ponchio, Federico; Callieri, Marco; Cignoni, Paolo; Spagnuolo, Michela and Melero, Francisco JavierIn Architectural Heritage, the masonry's interpretation is an essential instrument for analyzing the construction phases, the assessment of structural properties, and the monitoring of its state of conservation. This work is generally carried out by specialists that, based on visual observation and their knowledge, manually annotate ortho-images of the masonry generated by photogrammetric surveys. This results in vectorial thematic maps segmented according to their construction technique (isolating areas of homogeneous materials/structure/texture) or state of conservation, including degradation areas and damaged parts. This time-consuming manual work, often done with tools that have not been designed for this purpose, represents a bottleneck in the documentation and management workflow and is a severely limiting factor in monitoring large-scale monuments (e.g.city walls). This paper explores the potential of AI-based solutions to improve the efficiency of masonry annotation in Architectural Heritage. This experimentation aims at providing interactive tools that support and empower the current workflow, benefiting from specialists' expertise.Item Automatic Design of Cable‐Tensioned Glass Shells(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Laccone, Francesco; Malomo, Luigi; Froli, Maurizio; Cignoni, Paolo; Pietroni, Nico; Benes, Bedrich and Hauser, HelwigWe propose an optimization algorithm for the design of post‐tensioned architectural shell structures, composed of triangular glass panels, in which glass has a load‐bearing function. Due to its brittle nature, glass can fail when it is subject to tensile forces. Hence, we enrich the structure with a cable net, which is specifically designed to post‐tension the shell, relieving the underlying glass structure from tension. We automatically derive an optimized cable layout, together with the appropriate pre‐load of each cable. The method is driven by a physically based static analysis of the shell subject to its service load. We assess our approach by applying non‐linear finite element analysis to several real‐scale application scenarios. Such a method of cable tensioning produces glass shells that are optimized from the material usage viewpoint since they exploit the high compression strength of glass. As a result, they are lightweight and robust. Both aesthetic and static qualities are improved with respect to grid shell competitors.Item A Computational Tool for the Analysis of 3D Bending-active Structures Based on the Dynamic Relaxation Method(The Eurographics Association, 2022) Manolas, Iason; Laccone, Francesco; Cherchi, Gianmarco; Malomo, Luigi; Cignoni, Paolo; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoThe use of elastic deformation of straight or flat structural components for achieving complex 3D shapes has acquired attention from recent computational design works, particularly in architectural geometry. The so-called bending-active structures are built by deforming and restraining the components mutually to form a stable configuration. While the manufacturing of components from flat raw material and their assembly are simple and inexpensive, the complexity lies in the design phase, in which computational tools are required to predict the deformation and forces under a prescribed form-finding load or displacement. Currently, there is a scarcity of open and efficient tools that hinder the design of bending-active structures. This paper proposes and validates an open-source computational tool for predicting the static equilibrium of general bending-active structures in the form of a network of elements using the dynamic relaxation method. We apply our tool to various real-world examples and compare the results to a commercial FEM solver. The proposed tool shows accuracy and good time performance, making it a significant addition to the available open-source structural engineering toolkit.Item Enhanced Visualization of Detected 3D Geometric Differences(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Palma, Gianpaolo; Sabbadin, Manuele; Corsini, Massimiliano; Cignoni, Paolo; Chen, Min and Benes, BedrichThe wide availability of 3D acquisition devices makes viable their use for shape monitoring. The current techniques for the analysis of time‐varying data can efficiently detect actual significant geometric changes and rule out differences due to irrelevant variations (such as sampling, lighting and coverage). On the other hand, the effective visualization of such detected changes can be challenging when we want to show at the same time the original appearance of the 3D model. In this paper, we propose a dynamic technique for the effective visualization of detected differences between two 3D scenes. The presented approach, while retaining the original appearance, allows the user to switch between the two models in a way that enhances the geometric differences that have been detected as significant. Additionally, the same technique is able to visually hides the other negligible, yet visible, variations. The main idea is to use two distinct screen space time‐based interpolation functions for the significant 3D differences and for the small variations to hide. We have validated the proposed approach in a user study on a different class of datasets, proving the objective and subjective effectiveness of the method.The wide availability of 3D acquisition devices makes viable their use for shape monitoring. The current techniques for the analysis of time‐varying data can efficiently detect actual significant geometric changes and rule out differences due to irrelevant variations (such as sampling, lighting and coverage). On the other hand, the effective visualization of such detected changes can be challenging when we want to show at the same time the original appearance of the 3D model. In this paper, we propose a dynamic technique for the effective visualization of detected differences between two 3D scenes.Item EUROGRAPHICS 2019: Short Papers Frontmatter(Eurographics Association, 2019) Cignoni, Paolo; Miguel, Eder; Cignoni, Paolo and Miguel, EderItem State of the Art on Stylized Fabrication(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Bickel, Bernd; Cignoni, Paolo; Malomo, Luigi; Pietroni, Nico; Chen, Min and Benes, BedrichDigital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state‐of‐the‐art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research.Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state‐of‐the‐art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research.