Browsing by Author "Chen, Wei"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Peridynamics‐Based Fracture Animation for Elastoplastic Solids(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Chen, Wei; Zhu, Fei; Zhao, Jing; Li, Sheng; Wang, Guoping; Chen, Min and Benes, BedrichIn this paper, we exploit the use of peridynamics theory for graphical animation of material deformation and fracture. We present a new meshless framework for elastoplastic constitutive modelling that contrasts with previous approaches in graphics. Our peridynamics‐based elastoplasticity model represents deformation behaviours of materials with high realism. We validate the model by varying the material properties and performing comparisons with finite element method (FEM) simulations. The integral‐based nature of peridynamics makes it trivial to model material discontinuities, which outweighs differential‐based methods in both accuracy and ease of implementation. We propose a simple strategy to model fracture in the setting of peridynamics discretization. We demonstrate that the fracture criterion combined with our elastoplasticity model could realistically produce ductile fracture as well as brittle fracture. Our work is the first application of peridynamics in graphics that could create a wide range of material phenomena including elasticity, plasticity, and fracture. The complete framework provides an attractive alternative to existing methods for producing modern visual effects.In this paper, we exploit the use of peridynamics theory for graphical animation of material deformation and fracture. We present a new meshless framework for elastoplastic constitutive modelling that contrasts with previous approaches in graphics. Our peridynamics‐based elastoplasticity model represents deformation behaviours of materials with high realism. We validate the model by varying the material properties and performing comparisons with finite element method (FEM) simulations. The integral‐based nature of peridynamics makes it trivial to model material discontinuities, which outweighs differentialbased methods in both accuracy and ease of implementation.Item Reformulating Hyperelastic Materials with Peridynamic Modeling(The Eurographics Association and John Wiley & Sons Ltd., 2018) Xu, Liyou; He, Xiaowei; Chen, Wei; Li, Sheng; Wang, Guoping; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesPeridynamics is a formulation of the classical elastic theory that is targeted at simulating deformable objects with discontinuities, especially fractures. Till now, there are few studies that have been focused on how to model general hyperelastic materials with peridynamics. In this paper, we target at proposing a general strain energy function of hyperelastic materials for peridynamics. To get an intuitive model that can be easily controlled, we formulate the strain energy density function as a function parameterized by the dilatation and bond stretches, which can be decomposed into multiple one-dimensional functions independently. To account for nonlinear material behaviors, we also propose a set of nonlinear basis functions to help design a nonlinear strain energy function more easily. For an anisotropic material, we additionally introduce an anisotropic kernel to control the elastic behavior for each bond independently. Experiments show that our model is flexible enough to approximately regenerate various hyperelastic materials in classical elastic theory, including St.Venant-Kirchhoff and Neo-Hookean materials.Item A Visual Analytics Approach for Traffic Flow Prediction Ensembles(The Eurographics Association, 2018) Kong, Kezhi; Ma, Yuxin; Ye, Chentao; Lu, Junhua; Chen, Xiqun; Zhang, Wei; Chen, Wei; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesTraffic flow prediction plays a significant role in Intelligent Transportation Systems (ITS). Due to the variety of prediction models, the prediction results form an intricate structure of ensembles and hence leave a challenge of understanding and evaluating the ensembles from different perspectives. In this paper, we propose a novel visual analytics approach for analyzing the predicted ensembles. Our approach models the uncertainty of different traffic flow prediction results. The variations of space, time, and network structures of those results are presented with the visualization designs. The visual interface provides a suite of interactions to enhance exploration of the ensembles. With the system, analysts can discover some intrinsic patterns in the ensemble. We use real-world urban traffic data to demonstrate the effectiveness of our system.Item Visually Analyzing Latent Accessibility Clusters of Urban POIs(The Eurographics Association, 2019) Kamw, Farah; AL-Dohuki, Shamal; Zhao, Ye; Yang, Jing; Ye, Xinyue; Chen, Wei; Landesberger, Tatiana von and Turkay, CagatayAccessibility of urban POIs (Points of Interest) is a key topic in a variety of urban sciences and applications as it reflects inherent city design, transportation, and population flow features. Isochrone maps and other techniques have been used to identify and display reachable regions from given POIs. In addition, domain experts further want to study the distribution effects of accessibility in the urban space such as finding spatial regions that have different accessibility patterns. Such patterns can be manifested by clustering POIs based on their accessibility of different time periods under different traffic conditions. In this paper, we present a visualization system that helps users to find and visualize Latent Accessibility Clusters (LACs) of POIs. The LACs discover temporally changing urban sub-regions (including nearby POIs) with disparate accessibilities at different times. LACs are computed by a POIGraph which connects POIs into a graph structure by extending the dual road network of the corresponding city. The LAC computation is facilitated by graph traversal over the POIGraph. By visualizing the LAC regions on the map, users can visually study the hidden patterns of spatial accessibility. It can contribute to urban transportation, planning, business, and related social sciences.