Browsing by Author "Hanocka, Rana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HaLo-NeRF: Learning Geometry-Guided Semantics for Exploring Unconstrained Photo Collections(The Eurographics Association and John Wiley & Sons Ltd., 2024) Dudai, Chen; Alper, Morris; Bezalel, Hana; Hanocka, Rana; Lang, Itai; Averbuch-Elor, Hadar; Bermano, Amit H.; Kalogerakis, EvangelosInternet image collections containing photos captured by crowds of photographers show promise for enabling digital exploration of large-scale tourist landmarks. However, prior works focus primarily on geometric reconstruction and visualization, neglecting the key role of language in providing a semantic interface for navigation and fine-grained understanding. In more constrained 3D domains, recent methods have leveraged modern vision-and-language models as a strong prior of 2D visual semantics. While these models display an excellent understanding of broad visual semantics, they struggle with unconstrained photo collections depicting such tourist landmarks, as they lack expert knowledge of the architectural domain and fail to exploit the geometric consistency of images capturing multiple views of such scenes. In this work, we present a localization system that connects neural representations of scenes depicting large-scale landmarks with text describing a semantic region within the scene, by harnessing the power of SOTA vision-and-language models with adaptations for understanding landmark scene semantics. To bolster such models with fine-grained knowledge, we leverage large-scale Internet data containing images of similar landmarks along with weakly-related textual information. Our approach is built upon the premise that images physically grounded in space can provide a powerful supervision signal for localizing new concepts, whose semantics may be unlocked from Internet textual metadata with large language models. We use correspondences between views of scenes to bootstrap spatial understanding of these semantics, providing guidance for 3D-compatible segmentation that ultimately lifts to a volumetric scene representation. To evaluate our method, we present a new benchmark dataset containing large-scale scenes with groundtruth segmentations for multiple semantic concepts. Our results show that HaLo-NeRF can accurately localize a variety of semantic concepts related to architectural landmarks, surpassing the results of other 3D models as well as strong 2D segmentation baselines. Our code and data are publicly available at https://tau-vailab.github.io/HaLo-NeRF/.Item NeuralMLS: Geometry-Aware Control Point Deformation(The Eurographics Association, 2022) Shechter, Meitar; Hanocka, Rana; Metzer, Gal; Giryes, Raja; Cohen-Or, Daniel; Pelechano, Nuria; Vanderhaeghe, DavidWe introduce NeuralMLS, a space-based deformation technique, guided by a set of displaced control points. We leverage the power of neural networks to inject the underlying shape geometry into the deformation parameters. The goal of our technique is to enable a realistic and intuitive shape deformation. Our method is built upon moving least-squares (MLS), since it minimizes a weighted sum of the given control point displacements. Traditionally, the influence of each control point on every point in space (i.e., the weighting function) is defined using inverse distance heuristics. In this work, we opt to learn the weighting function, by training a neural network on the control points from a single input shape, and exploit the innate smoothness of neural networks. Our geometry-aware control point deformation is agnostic to the surface representation and quality; it can be applied to point clouds or meshes, including non-manifold and disconnected surface soups. We show that our technique facilitates intuitive piecewise smooth deformations, which are well suited for manufactured objects. We show the advantages of our approach compared to existing surface and space-based deformation techniques, both quantitatively and qualitatively.