Browsing by Author "Campen, Marcel"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Exact Constraint Satisfaction for Truly Seamless Parametrization(The Eurographics Association and John Wiley & Sons Ltd., 2019) Mandad, Manish; Campen, Marcel; Alliez, Pierre and Pellacini, FabioIn the field of global surface parametrization a recent focus has been on so-called seamless parametrization. This term refers to parametrization approaches which, while using an atlas of charts to enable the handling of surfaces of arbitrary topology, relate the parametrization across the cuts between charts via transition functions from special classes of transformations. This effectively makes the cuts invisible to applications which are invariant to these specific transformations in some sense. In actual implementations of these parametrization approaches, however, these restrictions are obeyed only approximately; errors stem from the tolerances of numerical solvers employed and, ultimately, from the limited accuracy of floating point arithmetic. In practice, robustness issues arise from these flaws in the seamlessness of a parametrization, no matter how small. We present a robust global algorithm that turns a given approximately seamless parametrization into an exactly seamless one - that still is representable by standard floating point numbers. It supports common practically relevant additional constraints regarding boundary and feature curve alignment or isocurve connectivity, and ensures that these are likewise fulfilled exactly. This allows subsequent algorithms to operate robustly on the resulting truly seamless parametrization. We believe that the core of our method will furthermore be of benefit in a broader range of applications involving linearly constrained numerical optimization.Item Rational Bézier Guarding(The Eurographics Association and John Wiley & Sons Ltd., 2022) Khanteimouri, Payam; Mandad, Manish; Campen, Marcel; Campen, Marcel; Spagnuolo, MichelaWe present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform exactly, without geometric error, to arbitrary rational domain boundary and feature curves. The method generalizes the recent Bézier Guarding technique, which is applicable only to polynomial curves and elements. This generalization enables the accurate handling of practically important cases involving, for instance, circular or elliptic arcs and NURBS curves, which cannot be matched by polynomial elements. Furthermore, although many practical scenarios are concerned with rational functions of quadratic and cubic degree only, our method is fully general and supports arbitrary degree. We demonstrate the method on a variety of test cases.Item SGP 2022 CGF 41-5: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2022) Campen, Marcel; Spagnuolo, Michela; Campen, Marcel; Spagnuolo, MichelaItem Simpler Quad Layouts using Relaxed Singularities(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lyon, Max; Campen, Marcel; Kobbelt, Leif; Digne, Julie and Crane, KeenanA common approach to automatic quad layout generation on surfaces is to, in a first stage, decide on the positioning of irregular layout vertices, followed by finding sensible layout edges connecting these vertices and partitioning the surface into quadrilateral patches in a second stage. While this two-step approach reduces the problem's complexity, this separation also limits the result quality. In the worst case, the set of layout vertices fixed in the first stage without consideration of the second may not even permit a valid quad layout. We propose an algorithm for the creation of quad layouts in which the initial layout vertices can be adjusted in the second stage. Whenever beneficial for layout quality or even validity, these vertices may be moved within a prescribed radius or even be removed. Our algorithm is based on a robust quantization strategy, turning a continuous T-mesh structure into a discrete layout. We show the effectiveness of our algorithm on a variety of inputs.Item Surface Map Homology Inference(The Eurographics Association and John Wiley & Sons Ltd., 2021) Born, Janis; Schmidt, Patrick; Campen, Marcel; Kobbelt, Leif; Digne, Julie and Crane, KeenanA homeomorphism between two surfaces not only defines a (continuous and bijective) geometric correspondence of points but also (by implication) an identification of topological features, i.e. handles and tunnels, and how the map twists around them. However, in practice, surface maps are often encoded via sparse correspondences or fuzzy representations that merely approximate a homeomorphism and are therefore inherently ambiguous about map topology. In this work, we show a way to infer topological information from an imperfect input map between two shapes. In particular, we compute a homology map, a linear map that transports homology classes of cycles from one surface to the other, subject to a global consistency constraint. Our inference robustly handles imperfect (e.g., partial, sparse, fuzzy, noisy, outlier-ridden, non-injective) input maps and is guaranteed to produce homology maps that are compatible with true homeomorphisms between the input shapes. Homology maps inferred by our method can be directly used to transfer homological information between shapes, or serve as foundation for the construction of a proper homeomorphism guided by the input map, e.g., via compatible surface decomposition.Item TinyAD: Automatic Differentiation in Geometry Processing Made Simple(The Eurographics Association and John Wiley & Sons Ltd., 2022) Schmidt, Patrick; Born, Janis; Bommes, David; Campen, Marcel; Kobbelt, Leif; Campen, Marcel; Spagnuolo, MichelaNon-linear optimization is essential to many areas of geometry processing research. However, when experimenting with different problem formulations or when prototyping new algorithms, a major practical obstacle is the need to figure out derivatives of objective functions, especially when second-order derivatives are required. Deriving and manually implementing gradients and Hessians is both time-consuming and error-prone. Automatic differentiation techniques address this problem, but can introduce a diverse set of obstacles themselves, e.g. limiting the set of supported language features, imposing restrictions on a program's control flow, incurring a significant run time overhead, or making it hard to exploit sparsity patterns common in geometry processing. We show that for many geometric problems, in particular on meshes, the simplest form of forward-mode automatic differentiation is not only the most flexible, but also actually the most efficient choice. We introduce TinyAD: a lightweight C++ library that automatically computes gradients and Hessians, in particular of sparse problems, by differentiating small (tiny) sub-problems. Its simplicity enables easy integration; no restrictions on, e.g., looping and branching are imposed. TinyAD provides the basic ingredients to quickly implement first and second order Newton-style solvers, allowing for flexible adjustment of both problem formulations and solver details. By showcasing compact implementations of methods from parametrization, deformation, and direction field design, we demonstrate how TinyAD lowers the barrier to exploring non-linear optimization techniques. This enables not only fast prototyping of new research ideas, but also improves replicability of existing algorithms in geometry processing. TinyAD is available to the community as an open source library.