Browsing by Author "Sorger, Johannes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Egocentric Network Exploration for Immersive Analytics(The Eurographics Association and John Wiley & Sons Ltd., 2021) Sorger, Johannes; Arleo, Alessio; Kán, Peter; Knecht, Wolfgang; Waldner, Manuela; Zhang, Fang-Lue and Eisemann, Elmar and Singh, KaranTo exploit the potential of immersive network analytics for engaging and effective exploration, we promote the metaphor of ''egocentrism'', where data depiction and interaction are adapted to the perspective of the user within a 3D network. Egocentrism has the potential to overcome some of the inherent downsides of virtual environments, e.g., visual clutter and cyber-sickness. To investigate the effect of this metaphor on immersive network exploration, we designed and evaluated interfaces of varying degrees of egocentrism. In a user study, we evaluated the effect of these interfaces on visual search tasks, efficiency of network traversal, spatial orientation, as well as cyber-sickness. Results show that a simple egocentric interface considerably improves visual search efficiency and navigation performance, yet does not decrease spatial orientation or increase cyber-sickness. An occlusion-free Ego-Bubble view of the neighborhood only marginally improves the user's performance. We tie our findings together in an open online tool for egocentric network exploration, providing actionable insights on the benefits of the egocentric network exploration metaphorItem Visual Exploration of Financial Data with Incremental Domain Knowledge(Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Arleo, Alessio; Tsigkanos, Christos; Leite, Roger A.; Dustdar, Schahram; Miksch, Silvia; Sorger, Johannes; Hauser, Helwig and Alliez, PierreModelling the dynamics of a growing financial environment is a complex task that requires domain knowledge, expertise and access to heterogeneous information types. Such information can stem from several sources at different scales, complicating the task of forming a holistic impression of the financial landscape, especially in terms of the economical relationships between firms. Bringing this scattered information into a common context is, therefore, an essential step in the process of obtaining meaningful insights about the state of an economy. In this paper, we present , a Visual Analytics (VA) approach for exploring financial data across different scales, from individual firms up to nation‐wide aggregate data. Our solution is coupled with a pipeline for the generation of firm‐to‐firm financial transaction networks, fusing information about individual firms with sector‐to‐sector transaction data and domain knowledge on macroscopic aspects of the economy. Each network can be created to have multiple instances to compare different scenarios. We collaborated with experts from finance and economy during the development of our VA solution, and evaluated our approach with seven domain experts across industry and academia through a qualitative insight‐based evaluation. The analysis shows how enables the generation of insights, and how the incorporation of transaction models assists users in their exploration of a national economy.