EG 2017 - STARs (CGF 36-2)
Permanent URI for this collection
Browse
Browsing EG 2017 - STARs (CGF 36-2) by Subject "I.3.3 [Computer Graphics]"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Comparative Review of Tone-mapping Algorithms for High Dynamic Range Video(The Eurographics Association and John Wiley & Sons Ltd., 2017) Eilertsen, Gabriel; Mantiuk, Rafal K.; Unger, Jonas; Victor Ostromoukov and Matthias ZwickerTone-mapping constitutes a key component within the field of high dynamic range (HDR) imaging. Its importance is manifested in the vast amount of tone-mapping methods that can be found in the literature, which are the result of an active development in the area for more than two decades. Although these can accommodate most requirements for display of HDR images, new challenges arose with the advent of HDR video, calling for additional considerations in the design of tone-mapping operators (TMOs). Today, a range of TMOs exist that do support video material.We are now reaching a point where most camera captured HDR videos can be prepared in high quality without visible artifacts, for the constraints of a standard display device. In this report, we set out to summarize and categorize the research in tone-mapping as of today, distilling the most important trends and characteristics of the tone reproduction pipeline. While this gives a wide overview over the area, we then specifically focus on tone-mapping of HDR video and the problems this medium entails. First, we formulate the major challenges a video TMO needs to address. Then, we provide a description and categorization of each of the existing video TMOs. Finally, by constructing a set of quantitative measures, we evaluate the performance of a number of the operators, in order to give a hint on which can be expected to render the least amount of artifacts. This serves as a comprehensive reference, categorization and comparative assessment of the state-of-the-art in tone-mapping for HDR video.Item Intrinsic Decompositions for Image Editing(The Eurographics Association and John Wiley & Sons Ltd., 2017) Bonneel, Nicolas; Kovacs, Balazs; Paris, Sylvain; Bala, Kavita; Victor Ostromoukov and Matthias ZwickerIntrinsic images are a mid-level representation of an image that decompose the image into reflectance and illumination layers. The reflectance layer captures the color/texture of surfaces in the scene, while the illumination layer captures shading effects caused by interactions between scene illumination and surface geometry. Intrinsic images have a long history in computer vision and recently in computer graphics, and have been shown to be a useful representation for tasks ranging from scene understanding and reconstruction to image editing. In this report, we review and evaluate past work on this problem. Specifically, we discuss each work in terms of the priors they impose on the intrinsic image problem. We introduce a new synthetic ground-truth dataset that we use to evaluate the validity of these priors and the performance of the methods. Finally, we evaluate the performance of the different methods in the context of image-editing applications.Item Perception-driven Accelerated Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2017) Weier, Martin; Stengel, Michael; Roth, Thorsten; Didyk, Piotr; Eisemann, Elmar; Eisemann, Martin; Grogorick, Steve; Hinkenjann, André; Kruijff, Ernst; Magnor, Marcus; Myszkowski, Karol; Slusallek, Philipp; Victor Ostromoukov and Matthias ZwickerAdvances in computer graphics enable us to create digital images of astonishing complexity and realism. However, processing resources are still a limiting factor. Hence, many costly but desirable aspects of realism are often not accounted for, including global illumination, accurate depth of field and motion blur, spectral effects, etc. especially in real-time rendering. At the same time, there is a strong trend towards more pixels per display due to larger displays, higher pixel densities or larger fields of view. Further observable trends in current display technology include more bits per pixel (high dynamic range, wider color gamut/fidelity), increasing refresh rates (better motion depiction), and an increasing number of displayed views per pixel (stereo, multi-view, all the way to holographic or lightfield displays). These developments cause significant unsolved technical challenges due to aspects such as limited compute power and bandwidth. Fortunately, the human visual system has certain limitations, which mean that providing the highest possible visual quality is not always necessary. In this report, we present the key research and models that exploit the limitations of perception to tackle visual quality and workload alike. Moreover, we present the open problems and promising future research targeting the question of how we can minimize the effort to compute and display only the necessary pixels while still offering a user full visual experience.