Machine Learning Methods in Visualisation for Big Data 2019
Permanent URI for this collection
Browse
Browsing Machine Learning Methods in Visualisation for Big Data 2019 by Subject "Information visualization"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Interpreting Black-Box Semantic Segmentation Models in Remote Sensing Applications(The Eurographics Association, 2019) Janik, Adrianna; Sankaran, Kris; Ortiz, Anthony; Archambault, Daniel and Nabney, Ian and Peltonen, JaakkoIn the interpretability literature, attention is focused on understanding black-box classifiers, but many problems ranging from medicine through agriculture and crisis response in humanitarian aid are tackled by semantic segmentation models. The absence of interpretability for these canonical problems in computer vision motivates this study. In this study we present a usercentric approach that blends techniques from interpretability, representation learning, and interactive visualization. It allows to visualize and link latent representation to real data instances as well as qualitatively assess strength of predictions. We have applied our method to a deep learning model for semantic segmentation, U-Net, in a remote sensing application of building detection. This application is of high interest for humanitarian crisis response teams that rely on satellite images analysis. Preliminary results shows utility in understanding semantic segmentation models, demo presenting the idea is available online.