40-Issue 2
Permanent URI for this collection
Browse
Browsing 40-Issue 2 by Subject "Image processing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Adversarial Single-Image SVBRDF Estimation with Hybrid Training(The Eurographics Association and John Wiley & Sons Ltd., 2021) Zhou, Xilong; Kalantari, Nima Khademi; Mitra, Niloy and Viola, IvanIn this paper, we propose a deep learning approach for estimating the spatially-varying BRDFs (SVBRDF) from a single image. Most existing deep learning techniques use pixel-wise loss functions which limits the flexibility of the networks in handling this highly unconstrained problem. Moreover, since obtaining ground truth SVBRDF parameters is difficult, most methods typically train their networks on synthetic images and, therefore, do not effectively generalize to real examples. To avoid these limitations, we propose an adversarial framework to handle this application. Specifically, we estimate the material properties using an encoder-decoder convolutional neural network (CNN) and train it through a series of discriminators that distinguish the output of the network from ground truth. To address the gap in data distribution of synthetic and real images, we train our network on both synthetic and real examples. Specifically, we propose a strategy to train our network on pairs of real images of the same object with different lighting. We demonstrate that our approach is able to handle a variety of cases better than the state-of-the-art methods.Item Interactive Photo Editing on Smartphones via Intrinsic Decomposition(The Eurographics Association and John Wiley & Sons Ltd., 2021) Shekhar, Sumit; Reimann, Max; Mayer, Maximilian; Semmo, Amir; Pasewaldt, Sebastian; Döllner, Jürgen; Trapp, Matthias; Mitra, Niloy and Viola, IvanIntrinsic decomposition refers to the problem of estimating scene characteristics, such as albedo and shading, when one view or multiple views of a scene are provided. The inverse problem setting, where multiple unknowns are solved given a single known pixel-value, is highly under-constrained. When provided with correlating image and depth data, intrinsic scene decomposition can be facilitated using depth-based priors, which nowadays is easy to acquire with high-end smartphones by utilizing their depth sensors. In this work, we present a system for intrinsic decomposition of RGB-D images on smartphones and the algorithmic as well as design choices therein. Unlike state-of-the-art methods that assume only diffuse reflectance, we consider both diffuse and specular pixels. For this purpose, we present a novel specularity extraction algorithm based on a multi-scale intensity decomposition and chroma inpainting. At this, the diffuse component is further decomposed into albedo and shading components. We use an inertial proximal algorithm for non-convex optimization (iPiano) to ensure albedo sparsity. Our GPUbased visual processing is implemented on iOS via the Metal API and enables interactive performance on an iPhone 11 Pro. Further, a qualitative evaluation shows that we are able to obtain high-quality outputs. Furthermore, our proposed approach for specularity removal outperforms state-of-the-art approaches for real-world images, while our albedo and shading layer decomposition is faster than the prior work at a comparable output quality. Manifold applications such as recoloring, retexturing, relighting, appearance editing, and stylization are shown, each using the intrinsic layers obtained with our method and/or the corresponding depth data.Item Real-Time Frequency Adjustment of Images and Videos(The Eurographics Association and John Wiley & Sons Ltd., 2021) Germano, Rafael L.; Oliveira, Manuel M.; Gastal, Eduardo S. L.; Mitra, Niloy and Viola, IvanWe present a technique for real-time adjustment of spatial frequencies in images and videos. Our method allows for both decreasing and increasing of frequencies, and is orthogonal to image resizing. Thus, it can be used to automatically adjust spatial frequencies to preserve the appearance of structured patterns during image downscaling and upscaling. By pre-computing the image's space-frequency decomposition and its unwrapped phases, these operations can be performed in real time, thanks to our novel mathematical perspective on frequency manipulation of digital images: interpreting the problem through the theory of instantaneous frequencies and phase unwrapping. To make this possible, we introduce an algorithm for the simultaneous phase unwrapping of several unordered frequency components, which also deals with the frequency-sign ambiguity of real signals. As such, our method provides theoretical and practical improvements to the concept of spectral remapping, enabling real-time performance and improved color handling. We demonstrate its effectiveness on a large number of images subject to frequency adjustment. By providing real-time control over the spatial frequencies associated with structured patterns, our technique expands the range of creative and technical possibilities for image and video processing.