40-Issue 2
Permanent URI for this collection
Browse
Browsing 40-Issue 2 by Subject "based rendering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interactive Photo Editing on Smartphones via Intrinsic Decomposition(The Eurographics Association and John Wiley & Sons Ltd., 2021) Shekhar, Sumit; Reimann, Max; Mayer, Maximilian; Semmo, Amir; Pasewaldt, Sebastian; Döllner, Jürgen; Trapp, Matthias; Mitra, Niloy and Viola, IvanIntrinsic decomposition refers to the problem of estimating scene characteristics, such as albedo and shading, when one view or multiple views of a scene are provided. The inverse problem setting, where multiple unknowns are solved given a single known pixel-value, is highly under-constrained. When provided with correlating image and depth data, intrinsic scene decomposition can be facilitated using depth-based priors, which nowadays is easy to acquire with high-end smartphones by utilizing their depth sensors. In this work, we present a system for intrinsic decomposition of RGB-D images on smartphones and the algorithmic as well as design choices therein. Unlike state-of-the-art methods that assume only diffuse reflectance, we consider both diffuse and specular pixels. For this purpose, we present a novel specularity extraction algorithm based on a multi-scale intensity decomposition and chroma inpainting. At this, the diffuse component is further decomposed into albedo and shading components. We use an inertial proximal algorithm for non-convex optimization (iPiano) to ensure albedo sparsity. Our GPUbased visual processing is implemented on iOS via the Metal API and enables interactive performance on an iPhone 11 Pro. Further, a qualitative evaluation shows that we are able to obtain high-quality outputs. Furthermore, our proposed approach for specularity removal outperforms state-of-the-art approaches for real-world images, while our albedo and shading layer decomposition is faster than the prior work at a comparable output quality. Manifold applications such as recoloring, retexturing, relighting, appearance editing, and stylization are shown, each using the intrinsic layers obtained with our method and/or the corresponding depth data.Item SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming(The Eurographics Association and John Wiley & Sons Ltd., 2021) Hladky, Jozef; Seidel, Hans-Peter; Steinberger, Markus; Mitra, Niloy and Viola, IvanStreaming rendering, e.g., rendering in the cloud and streaming via a mobile connection, suffers from increased latency and unreliable connections. High quality framerate upsampling can hide these issues, especially when capturing shading into an atlas and transmitting it alongside geometric information. The captured shading information must consider triangle footprints and temporal stability to ensure efficient video encoding. Previous approaches only consider either temporal stability or sample distributions, but none focuses on both. With SnakeBinning, we present an efficient triangle packing approach that adjusts sample distributions and caters for temporal coherence. Using a multi-dimensional binning approach, we enforce tight packing among triangles while creating optimal sample distributions. Our binning is built on top of hardware supported real-time rendering where bins are mapped to individual pixels in a virtual framebuffer. Fragment shader interlock and atomic operations enforce global ordering of triangles within each bin, and thus temporal coherence according to the primitive order is achieved. Resampling the bin distribution guarantees high occupancy among all bins and a dense atlas packing. Shading samples are directly captured into the atlas using a rasterization pass, adjusting samples for perspective effects and creating a tight packing. Comparison to previous atlas packing approaches shows that our approach is faster than previous work and achieves the best sample distributions while maintaining temporal coherence. In this way, SnakeBinning achieves the highest rendering quality under equal atlas memory requirements. At the same time, its temporal coherence ensures that we require equal or less bandwidth than previous state-of-the-art. As SnakeBinning outperforms previous approach in all relevant aspects, it is the preferred choice for texture-based streaming rendering.