EG UK Theory and Practice of Computer Graphics
Permanent URI for this community
Browse
Browsing EG UK Theory and Practice of Computer Graphics by Subject "Applied computing"
Now showing 1 - 19 of 19
Results Per Page
Sort Options
Item AUPE: An Emulator for the ExoMars PanCam Instrument(The Eurographics Association, 2023) Ladegaard, Ariel; Gunn, Matt; Miles, Helen C.; Tyler, Laurence; Vangorp, Peter; Hunter, DavidThe European Space Agency's ExoMars mission will be the first European-led planetary rover mission and much preparation and rehearsal is required, both for the personnel involved and the data processing pipelines and analysis software. The long instrument development cycle and significant cost associated with flight hardware prohibits their use for extensive field deployment and testing and so emulator systems are required. For this reason an emulator for the PanCam camera system was developed using commercial off-the-shelf components. PanCam's multispectral imaging capabilities will be used to guide the rover to sites of scientific interest, and development of this emulator and the associated data processing techniques are proving invaluable in ensuring the visual-based data products provided to scientists are accurate and that their processing is a transparent and traceable process.Item Automatic Balance Assessment Using Smartphone and AI(The Eurographics Association, 2023) Sganga, Magalí; Rozmiarek, Patrycja; Ravera, Emiliano; Akanyeti, Otar; Povina, Federico Villagra; Vangorp, Peter; Hunter, DavidPostural control assessment is essential for understanding human biomechanics in both static and dynamic situations. The relationship between the center of mass (CoM), center of pressure (CoP), and the base of support (BoS) determines whether a person is capable to maintain the balance. Inertial motion units (IMUs) are portable and cost-effective devices capable of measuring acceleration and angular velocity. The integration of IMUs into smartphones provides an accessible means of evaluating postural control in the general population without the need for expensive and time-consuming laboratory setups. A convolutional neural network (CNN) architecture will be employed to predict the difference between the CoM and CoP behavior during different tasks with data from an optoelectronic motion capture system combined with instrumented treadmill. This study aims to establish the foundation for developing an application that assesses postural control and balance in both healthy and pathological populations.Item Breathing Life into Statues Using Augmented Reality(The Eurographics Association, 2020) Ioannou, Eleftherios; Maddock, Steve; Ritsos, Panagiotis D. and Xu, KaiAR art is a relatively recent phenomenon, one that brings innovation in the way that artworks can be produced and presented in real-world locations and environments. We present an AR art app, running in real time on a smartphone, that can be used to bring to life inanimate objects such as statues. The work relies on a virtual copy of the real object, which is produced using photogrammetry, as well as a skeleton rig for subsequent animation. As part of the work, we present a new diminishing reality technique, based on the use of particle systems, to make the real object 'disappear' and be replaced by the animating virtual copy, effectively animating the inanimate. The approach is demonstrated on two objects: a juice carton and a small giraffe sculpture.Item Design Guidelines for Virtual Neurological Procedures(The Eurographics Association, 2021) Mancosu, Mattia S.; Czanner, Silvester; Xu, Kai and Turner, MartinThe role of technology has become more and more preponderant for educational purposes in schools, in universities and for training. It is also applied in healthcare and neurology training thanks to the proven effectiveness and the rising demand inside hospitals and medical schools. The necessity to outline design guidelines is increasing hand to hand with the aforementioned phenomenon. In this paper we will discuss some key aspects of a healthcare teaching application such as the fidelity of the learning environment, the target platform of the application with a particular focus on Virtual Reality, and the learning strategies that can be implemented within the program. We will also illustrate some results of our stroke assessment training application, where we proved the effectiveness of the proper implementation of some design aspects that we addressed inside the guidelines section.Item Evolutionary Interactive Analysis of MRI Gastric Images Using a Multiobjective Cooperative-coevolution Scheme(The Eurographics Association, 2018) Al-Maliki, Shatha F.; Lutton, Évelyne; Boué, François; Vidal, Franck; {Tam, Gary K. L. and Vidal, FranckIn this study, we combine computer vision and visualisation/data exploration to analyse magnetic resonance imaging (MRI) data and detect garden peas inside the stomach. It is a preliminary objective of a larger project that aims to understand the kinetics of gastric emptying. We propose to perform the image analysis task as a multi-objective optimisation. A set of 7 equally important objectives are proposed to characterise peas. We rely on a cooperation co-evolution algorithm called 'Fly Algorithm' implemented using NSGA-II. The Fly Algorithm is a specific case of the 'Parisian Approach' where the solution of an optimisation problem is represented as a set of individuals (e.g. the whole population) instead of a single individual (the best one) as in typical evolutionary algorithms (EAs). NSGA-II is a popular EA used to solve multi-objective optimisation problems. The output of the optimisation is a succession of datasets that progressively approximate the Pareto front, which needs to be understood and explored by the end-user. Using interactive Information Visualisation (InfoVis) and clustering techniques, peas are then semi-automatically segmented.Item Immersive WebXR Data Visualisation Tool(The Eurographics Association, 2023) Ogbonda, Ebube Glory; Vangorp, Peter; Hunter, DavidThis paper presents a study of a WebXR data visualisation tool designed for the immersive exploration of complex datasets in a 3D environment. The application developed using AFrame, D3.js, and JavaScript enables an interactive, device-agnostic platform compatible with various devices and systems. A user study is proposed to assess the tool's usability, user experience, and mental workload using the NASA Task Load Index (NASA TLX). The evaluation is planned to employ questionnaires, task completion times, and open-ended questions to gather feedback and insights. The anticipated results aim to provide insights into the effectiveness of the application in supporting users in understanding and extracting insights from complex data while delivering an engaging and intuitive experience. Future work will refine and expand the tool's capabilities by exploring interaction guidance, visualisation layout optimisation, and long-term user experience assessment. This research contributes to the growing field of immersive data visualisation and informs future tool design.Item Learning Activities in Colours and Rainbows for Programming Skill Development(The Eurographics Association, 2021) Roberts, Jonathan C.; Xu, Kai and Turner, MartinWe present how we have created a series of bilingual (English and Welsh) STEM activities focusing on rainbows, colours, light and optical effects. The activities were motivated by the many rainbows that appeared in windows in the UK, in support of the National Health Service at the start of the coronavirus pandemic. Rainbows are hopeful and are very fitting to be used as a positive iconic image at a time of much uncertainty. In this paper we explain how we have developed and organised the activities, focusing on colours, computer graphics and computer programming. Each lesson contains one or more activities, which enable people to take an active role in their learning.We have carefully prepared and organised several processes to guide academic colleagues to create and publish different activities in the theme. Which means that the activities appear similarly structured, can be categorised and searched in a consistent way. This structure can act as a blueprint for others to follow and apply to develop their own online course. The activities incrementally take people through learning about colour, rainbows, planning what to program, design and strategies to create colourful pictures using simple computer graphics principles based in processing.org.Item Medical Ultrasound Training in Virtual Reality(The Eurographics Association, 2020) Elliman, James P.; Bethapudi, Sarath; Koulieris, George Alex; Ritsos, Panagiotis D. and Xu, KaiIn this work we propose a novel training solution for learning and practising the core psychomotor skills required in Diagnostic Ultrasound examinations with a computer-based simulator. This is in response to the long-standing challenges faced by educators in providing regular training opportunities as a shortage of equipment, staff unavailability and cost, hamper the current training model. We propose an alternative, VR-based model with a highly realistic 3D environment. To further realism of the experience, 3D printed props that work in conjunction with the simulation software will be designed. Our approach further extends previous work in generative model-based US simulation by developing a ray-tracing algorithm for use with the recently released NVidia RTX technology.Item MolPathFinder: Interactive Multi-Dimensional Path Filtering of Molecular Dynamics Simulation Data(The Eurographics Association, 2016) Alharbi, Naif; Laramee, Robert S.; Chavent, Matthieu; Cagatay Turkay and Tao Ruan WanMolecular Dynamics Simulations (MDS) play an important role in the field of computational biology. The simulations produce large high-dimensional, spatio-temporal data describing the motion of atoms and molecules. A central challenge in the field is the extraction and visualization of useful behavioral patterns from these simulations. Many visualization tools have been proposed to help computational biologists gain insight into MDS data. While recent developments focused on accelerating and optimising the rendering, it is still necessary to design new metaphors to better understand and filter MDS datasets. In this article, we are describing a set of tools to interactively filter and highlight dynamic and complex paths constituted by motions of molecules. In collaboration with computational biologists, we have tested our approach on large-scale, real data. Based on the user's feedback, our program helped scientists to navigate more easily through their dataset and isolate interesting patterns. Furthermore, our approach was useful to investigate both local and global behavior of molecular motions.Item Recognising Specific Foods in MRI Scans Using CNN and Visualisation(The Eurographics Association, 2020) Gardner, Joshua; Al-Maliki, Shatha; Lutton, Évelyne; Boué, François; Vidal, Franck; Ritsos, Panagiotis D. and Xu, KaiThis work is part of an experimental project aiming at understanding the kinetics of human gastric emptying. For this purpose magnetic resonance imaging (MRI) images of the stomach of healthy volunteers have been acquired using a state-of-art scanner with an adapted protocol. The challenge is to follow the stomach content (food) in the data. Frozen garden peas and petits pois have been chosen as experimental proof-of-concept as their shapes are well defined and are not altered in the early stages of digestion. The food recognition is performed as a binary classification implemented using a deep convolutional neural network (CNN). Input hyperparameters, here image size and number of epochs, were exhaustively evaluated to identify the combination of parameters that produces the best classification. The results have been analysed using interactive visualisation. We prove in this paper that advances in computer vision and machine learning can be deployed to automatically label the content of the stomach even when the amount of training data is low and the data imbalanced. Interactive visualisation helps identify the most effective combinations of hyperparameters to maximise accuracy, precision, recall and F1 score, leaving the end-user evaluate the possible trade-off between these metrics. Food recognition in MRI scans through neural network produced an accuracy of 0.97, precision of 0.91, recall of 0.86 and F1 score of 0.89, all close to 1.Item Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences(The Eurographics Association, 2019) Wang, T.; Vladimirov, K.; Goh, S.; Lai, Y.-K.; Xie, X.; Tam, G. K. L.; Vidal, Franck P. and Tam, Gary K. L. and Roberts, Jonathan C.Solving jigsaw puzzles is a classic problem in computer vision with various applications. Over the past decades, many useful approaches have been introduced. Most existing works use edge-wise similarity measures for assembling puzzles with square pieces of the same size, and recent work innovates to use the loop constraint to improve efficiency and accuracy. We observe that most existing techniques cannot be easily extended to puzzles with rectangular pieces of arbitrary sizes, and no existing loop constraints can be used to model such challenging scenarios. In this paper, we propose a new corner-wise matching approach, modelled using the MatchLift framework to solve square puzzles with cycle consistency. We further show one exciting example illustrating how puzzles with rectangular pieces of arbitrary sizes would be solved by our technique.Item Simulating Dynamic Ecosystems with Co-Evolutionary Agents(The Eurographics Association, 2020) Ferguson, Gary; Vidal, Franck; Ritsos, Panagiotis D. and Xu, KaiAs video games grow in complexity and require increasingly large and immersive environments, there is a need for more believable and dynamic characters not controlled by the player, known as non-player character (NPC). Video game developers will often face the challenge of designing these NPCs in a time efficient manner. We propose an agent-based Cooperative Co-evolution Algorithm (CCEA) where NPCs are implemented as artificial life (AL) agents that are created through an evolutionary process based on simple rules. The virtual environment can be filled with a range of interesting agents, each acting independently from one another, to fulfil their own wants and needs. The proposed middleware framework is suitable for computer animation of NPCs and the development of video games, especially where swarm intelligence is simulated. We proved that agents implemented with a very limited number of variables making up their genome can be successfully integrated in a co-evolutionary multi-agent system (CoEMAS). Results showed promising levels of speciation and interesting emergent and plausible behaviours amongst the agents.Item Towards a Survey of Interactive Visualization for Education(The Eurographics Association, 2018) Fırat, Elif E.; Laramee, Robert S.; {Tam, Gary K. L. and Vidal, FranckGraphic design and visualization are becoming fundamental components of education. The use of advanced visual design in pedagogy is growing and evolving rapidly. One of their aims is to enhance the educational process by facilitating better understanding of the subject with the use of graphical representation methods. Research papers in this field offer important opportunities to examine previously completed experiments and extract useful educational outcomes. This paper analyzes and classifies pedagogical visualization research papers to increase understanding in this area. To our knowledge, this is the first (work-in-progress) survey paper on advanced visualization for education. We categorize related research papers into original subject groups that enable researchers to compare related literature. Our novel classification enables researchers to find both mature and unexplored directions which can inform directions for future work. This paper serves as a valuable resource for both beginners and experienced researchers who are interested in interactive visualization for education.Item Towards Ceramics Inspired Physiotherapy for Recovering Stroke Patients(The Eurographics Association, 2023) Hajzer, Sándor P.; Jones, Andra; Jones, David E.; Miles, Helen C.; Ellis, Victoria; Povina, Federico V.; Sganga, Magalí; Swain, Martin T.; Bennett-Gillison, Sophie; Vangorp, Peter; Hunter, DavidPeople prescribed physiotherapy exercises can struggle to engage with exercises due to a lack of mental stimulation in the repetitive tasks. The introduction of VR to motion-based physiotherapy can be beneficial, however, currently available physiotherapy applications are focused on gaming and the gamification of physiotherapy, something that will not appeal to all patients. This project presents work in-progress towards a VR ceramics painting inspired physiotherapy application, where patients are guided to perform a series of simple motion exercises under the supervision of physiotherapists. Literature shows that art-based therapy can improve patient outcome, and ceramics involves a range of 3D movements that can be aligned with physiotherapy exercises. The work presented is intended to inform future research and development efforts.Item The University on Lincoln Island: Reimagining a University Campus as a Role-Playing Video Game(The Eurographics Association, 2021) Headleand, Christopher J.; Davies, Bethany; Threlfall, Danielle; Williams, Benjamin; Xu, Kai and Turner, MartinThis paper presents the University of Lincoln Island (TULI), a work-in-progress project where the University of Lincoln campus has been recreated digitally and re-imagined as a fantasy role-playing computer game. Universities have had to respond to a number of key challenges in response to the COVID-19 pandemic. Moving teaching and research online has been facilitated by a number of mature software platforms and tool-sets and the institutional expertise to wield them. However, there are fewer core activities that have digital provisions, thereby requiring a more creative approach. One of these areas is campus familiarisation, traditionally managed through timetabled events such as guided tours and scavenger hunts. However, these activities will be untenable until social distancing measures are lifted, forcing us to consider alternatives. This paper presents gamified virtual environments as a digital solution to support students in this area. We identify a number of key challenges and opportunities in the hopes that it will provide insight for future work in this domain.Item Using The Barnes-Hut Approximation for Fast N-Body Simulations in Computer Graphics(The Eurographics Association, 2023) Dravecky, Peter; Stephenson, Ian; Vangorp, Peter; Hunter, DavidParticle systems in CG often encounter performance issues when all the particles rely on mutual influence, producing an O(N2) performance. The Barnes-Hut approximation is used in the field of astrophysics to provide sufficiently accurate results in O(Nlog(N)) time. Here we explore a hardware accelerated implementation of this algorithm, implemented within SideFX Houdini - the commercial tool typically used for particle work in film. We are able to demonstrate a workflow with integrates into the existing artist friendly environment, with performance improved by orders of magnitudes for typically large simulations, and negligible visual change in results.Item Virtual Reality Callouts - Demonstrating Knowledge With Spatial-Related Textual Information(The Eurographics Association, 2019) Horst, Robin; Degreif, Anika; Mathy, Marvin; Dörner, Ralf; Vidal, Franck P. and Tam, Gary K. L. and Roberts, Jonathan C.Virtual (VR) and augmented reality (AR) can bring an added value during the demonstration of knowledge, as for example within an interactive research demo. Callouts are strings of text which are connected by a line to a specific feature of an object. These visual annotations can be used during such demos and can be placed in different kinds of media, such as illustrations, technical drawings, images and videos. Callouts are also used in virtual 3D environments to anchor textual information to a specific point in space. Therefore they can be a valuable tool for virtually demonstrating knowledge. The alignment of callouts in such information rich environments is an elemental factor within the view management of the VR scene. In this paper we propose a concept for interactive microlearning application for knowledge demonstration that uses callouts as a fundamental element. We distinguish three types of interactive callout-representations by their alignment relative to the user, for being static or dynamic in their position and orientation. Within an implementation of the different callout versions we show the feasibility and in a user study we indicate a user-preference towards static positioned callouts.Item Visualizing Usage Data from a Diabetes Management System(The Eurographics Association, 2020) Duce, David A.; Martin, Clare; Russell, Alex; Brown, Dan; Aldea, Arantza; Alshaigy, Bedour; Harrison, Rachel; Waite, Marion; Leal, Yenny; Wos, Marzena; Fernandez-Balsells, Mercè; Real, José Manuel Fernández; Nita, Lucian; López, Beatriz; Massana, Joaquim; Avari, Parizad; Herrero, Pau; Jugnee, Narvada; Oliver, Nick; Reddy, Monika; Ritsos, Panagiotis D. and Xu, KaiThis article explores the role for visualization in interpreting data collected by a customised analytics framework within a healthcare technology project. It draws on the work of the EU-funded PEPPER project, which has created a personalised decision-support system for people with type 1 diabetes. Our approach was an exercise in exploratory visualization, as described by Bergeron's three category taxonomy. The charts revealed different patterns of interaction, including variability in insulin dosing schedule, and potential causes of rejected advice. These insights into user behaviour are of especial value to this field, as they may help clinicians and developers understand some of the obstacles that hinder the uptake of diabetes technology.Item Where's Wally? A Machine Learning Approach(The Eurographics Association, 2021) Barthelmes, Tobias; Vidal, Franck; Xu, Kai and Turner, MartinObject detection has been implemented in all sorts of real-life scenarios such as facial recognition, traffic monitoring and medical imaging but the research that has gone into object detection in drawings and cartoons is not nearly as extensive. The Where's Wally puzzle books give a good opportunity to implement some of these real-life methods into the fictional world. The Wally detection framework proposed is composed of two stages: i) a Haar-cascade classifier based on the Viola-Jones framework, which detects possible candidates from a scenario from the Where'sWally books, and ii) a lightweight convolutional neural network (CNN) that re-labels the objects detected by the cascade classifier. The cascade classifier was trained on 85 positive images and 172 negative images. It was then applied to 12 test images, which produced over 400 false positives. To increase the accuracy of the models, hard negative mining was implemented. The framework achieved a recall score of 84.61% and an F1 score of 78.54%. Improvements could be made to the training data or the CNN to further increase these scores.