Eurovis: Eurographics Conference on Visualization
Permanent URI for this community
Browse
Browsing Eurovis: Eurographics Conference on Visualization by Subject "Boundary Representations"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interactive Exploration of Protein Cavities(The Eurographics Association and Blackwell Publishing Ltd., 2011) Krone, M.; Falk, M.; Rehm, S.; Pleiss, J.; Ertl, T.; H. Hauser, H. Pfister, and J. J. van WijkWe present a novel application for the interactive exploration of cavities within proteins in dynamic data sets. Inside a protein, cavities can often be found close to the active center. Therefore, when analyzing a molecular dynamics simulation trajectory it is of great interest to find these cavities and determine if such a cavity opens up to the environment, making the binding site accessible to the surrounding substrate. Our user-driven approach enables expert users to select a certain cavity and track its evolution over time. The user is supported by different visualizations of the extracted cavity to facilitate the analysis. The boundary of the protein and its cavities is obtained by means of volume ray casting, where the volume is computed in real-time for each frame, therefore allowing the examination of time-dependent data sets. A fast, partial segmentation of the volume is applied to obtain the selected cavity and trace it over time. Domain experts found our method useful when they applied it exemplarily on two trajectories of lipases from Rhizomucor miehei and Candida antarctica. In both data sets cavities near the active center were easily identified and tracked over time until they reached the surface and formed an open substrate channel.Item Interactive Extraction and Tracking of Biomolecular Surfaces Features(The Eurographics Association and Blackwell Publishing Ltd., 2013) Krone, Michael; Reina, Guido; Schulz, Christoph; Kulschewski, Tobias; Pleiss, Jürgen; Ertl, Thomas; B. Preim, P. Rheingans, and H. TheiselWe present a coordinated-view application for the analysis of molecular surface features like cavities, channels and pockets. Our tool employs object-space ambient occlusion for the detection of such features and tracks them over time. It offers time-dependent graphs of metrics concerning those features and allows analyzing the temporal relationship of the features, i.e. when they (dis)appear, split or merge and which features participate in each of these events. The automated analysis process is performed in real time while the user interactively explores a dynamic data set. The system supports linking and brushing to allow for a user-guided visual analysis based on different aspects of the data. We demonstrate the effectiveness of our approach by applying it to data sets from biochemistry and report the insights that can be gained. We also evaluate the benefits of our method with respect to recent advancements in the field. The algorithmic pipeline leverages the computing power of modern GPUs, thus achieving interactive frame rates without any precomputation for fully dynamic data sets.