VMV2022
Permanent URI for this collection
Browse
Browsing VMV2022 by Subject "Applied computing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Alignment and Reassembly of Broken Specimens for Creep Ductility Measurements(The Eurographics Association, 2022) Knauthe, Volker; Kraus, Maurice; Buelow, Max von; Wirth, Tristan; Rak, Arne; Merth, Laurenz; Erbe, Alexander; Kontermann, Christian; Guthe, Stefan; Kuijper, Arjan; Fellner, Dieter W.; Bender, Jan; Botsch, Mario; Keim, Daniel A.Designing new types of heat-resistant steel components is an important and active research field in material science. It requires detailed knowledge of the inherent steel properties, especially concerning their creep ductility. Highly precise automatic stateof- the-art approaches for such measurements are very expensive and often times invasive. The alternative requires manual work from specialists and is time consuming and unrobust. In this paper, we present a novel approach that uses a photometric scanning system for capturing the geometry of steel specimens, making further measurement extractions possible. In our proposed system, we apply calibration for pan angles that occur during capturing and a robust reassembly for matching two broken specimen pieces to extract the specimen's geometry. We compare our results against µCT scans and found that it deviates by 0.057mm on average distributed over the whole specimen for a small amount of 36 captured images. Additionally, comparisons to manually measured values indicate that our system leads to more robust measurements.Item Astray: A Performance-Portable Geodesic Ray Tracer(The Eurographics Association, 2022) Demiralp, Ali Can; Krüger, Marcel; Chao, Chu; Kuhlen, Torsten W.; Gerrits, Tim; Bender, Jan; Botsch, Mario; Keim, Daniel A.Geodesic ray tracing is the numerical method to compute the motion of matter and radiation in spacetime. It enables visualization of the geometry of spacetime and is an important tool to study the gravitational fields in the presence of astrophysical phenomena such as black holes. Although the method is largely established, solving the geodesic equation remains a computationally demanding task. In this work, we present Astray; a high-performance geodesic ray tracing library capable of running on a single or a cluster of computers equipped with compute or graphics processing units. The library is able to visualize any spacetime given its metric tensor and contains optimized implementations of a wide range of spacetimes, including commonly studied ones such as Schwarzschild and Kerr. The performance of the library is evaluated on standard consumer hardware as well as a compute cluster through strong and weak scaling benchmarks. The results indicate that the system is capable of reaching interactive frame rates with increasing use of high-performance computing resources. We further introduce a user interface capable of remote rendering on a cluster for interactive visualization of spacetimes.Item Evaluation of Volume Representation Networks for Meteorological Ensemble Compression(The Eurographics Association, 2022) Höhlein, Kevin; Weiss, Sebastian; Necker, Tobias; Weissmann, Martin; Miyoshi, Takemasa; Westermann, Rüdiger; Bender, Jan; Botsch, Mario; Keim, Daniel A.Recent studies have shown that volume scene representation networks constitute powerful means to transform 3D scalar fields into extremely compact representations, from which the initial field samples can be randomly accessed. In this work, we evaluate the capabilities of such networks to compress meteorological ensemble data, which are comprised of many separate weather forecast simulations. We analyze whether these networks can effectively exploit similarities between the ensemble members, and how alternative classical compression approaches perform in comparison. Since meteorological ensembles contain different physical parameters with various statistical characteristics and variations on multiple scales of magnitude, we analyze the impact of data normalization schemes on learning quality. Along with an evaluation of the trade-offs between reconstruction quality and network model parameterization, we compare compression ratios and reconstruction quality for different model architectures and alternative compression schemes.