VCBM 17: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 17: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Classification and regression trees"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Automatic Thrombus Detection in Non-enhanced Computed Tomography Images in Patients With Acute Ischemic Stroke(The Eurographics Association, 2017) Löber, Patrick; Stimpel, Bernhard; Syben, Christopher; Maier, Andreas; Ditt, Hendrik; Schramm, Peter; Raczkowski, Boy; Kemmling, André; Stefan Bruckner and Anja Hennemuth and Bernhard Kainz and Ingrid Hotz and Dorit Merhof and Christian RiederIn case of an ischemic stroke, identifying and removing blood clots is crucial for a successful recovery. We present a novel method to automatically detect vascular occlusion in non-enhanced computed tomography (NECT) images. Possible hyperdense thrombus candidates are extracted by thresholding and connected component clustering. A set of different features is computed to describe the objects, and a Random Forest classifier is applied to predict them. Thrombus classification yields 98.7% sensitivity with 6.7 false positives per volume, and 91.1% sensitivity with 2.7 false positives per volume. The classifier assigns a clot probability > = 90% for every thrombus with a volume larger than 100 mm3 or with a length above 23 mm, and can be used as a reliable method to detect blood clots.