VCBM 17: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 17: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Health informatics"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bone Fracture and Lesion Assessment using Shape-Adaptive Unfolding(The Eurographics Association, 2017) Martinke, Hannes; Petry, Christian; Großkopf, Stefan; Suehling, Michael; Soza, Grzegorz; Preim, Bernhard; Mistelbauer, Gabriel; Stefan Bruckner and Anja Hennemuth and Bernhard Kainz and Ingrid Hotz and Dorit Merhof and Christian RiederThe assessment of rib bone fractures and lesions consists of many images that have to be thoroughly inspected slice-by-slice and rib-by-rib. Existing visualization methods, such as curved planar reformation (CPR), reduce the number of images to inspect and, in turn, the time spent per case. However, this task remains time-consuming and exhausting. In this paper, we propose a novel rib unfolding strategy that considers the cross-sectional shape of each rib individually and independently. This leads to shape-adaptive slices through the ribs. By aggregating these slices into a single image, we support radiologists with a concise overview visualization of the entire rib cage for fracture and lesion assessment. We present results of our approach along different cases of rib and spinal fractures as well as lesions. To assess the applicability of our method, we separately evaluated the segmentation (with 954 data sets) and the visualization (with two clinical coaches).Item CT-Based Navigation Guidance for Liver Tumor Ablation(The Eurographics Association, 2017) Alpers, Julian; Hansen, Christian; Ringe, Kristina; Rieder, Christian; Stefan Bruckner and Anja Hennemuth and Bernhard Kainz and Ingrid Hotz and Dorit Merhof and Christian RiederImage-guided thermal ablation procedures such as microwave ablation (MWA) or radiofrequency ablation (RFA) have become clinically accepted treatment options for liver tumors. The goal of these minimally invasive procedures is the destruction of focal liver malignancies using mostly needle-shaped instruments. Computed tomography (CT) imaging may be used to navigate the applicator to the target position in order to achieve complete tumor ablation. Due to limited image quality and resolution, the treatment target and risk structures may be hardly visible in intra-interventional CT-images, hampering verification of the intended applicator position. In this work, we propose a navigation guidance method based only on CT images to support the physician with additional information to reach the target position. Therefore, planning information extracted from pre-interventional images is fused with the current intra-interventional image. The visible applicator is extracted semi-automatically from the intra-interventional image. The localization of the needle instrument is used to guide the physician by display of the pathway, projection of anatomical structures, and correction suggestions. In an evaluation, we demonstrate the potential of the proposed method to improve the clinical success rate of complex liver tumor ablations while increasing the accuracy and reducing the number of intra-interventional CT images needed.Item Visual Navigation Support for Liver Applicator Placement using Interactive Map Displays(The Eurographics Association, 2017) Hettig, Julian; Mistelbauer, Gabriel; Rieder, Christian; Lawonn, Kai; Hansen, Christian; Stefan Bruckner and Anja Hennemuth and Bernhard Kainz and Ingrid Hotz and Dorit Merhof and Christian RiederNavigated placement of an ablation applicator in liver surgery would benefit from an effective intraoperative visualization of delicate 3D anatomical structures. In this paper, we propose an approach that facilitates surgery with an interactive as well as an animated map display to support navigated applicator placement in the liver. By reducing the visual complexity of 3D anatomical structures, we provide only the most important information on and around a planned applicator path. By employing different illustrative visualization techniques, the applicator path and its surrounding critical structures, such as blood vessels, are clearly conveyed in an unobstructed way. To retain contextual information around the applicator path and its tip, we desaturate these structures with increasing distance. To alleviate time-consuming and tedious interaction during surgery, our visualization is controlled solely by the position and orientation of a tracked applicator. This enables a direct interaction with the map display without interruption of the intervention. Based on our requirement analysis, we conducted a pilot study with eleven participants and an interactive user study with six domain experts to assess the task completion time, error rate, visual parameters and the usefulness of the animation. The outcome of our pilot study shows that our map display facilitates significantly faster decision making (11.8 s vs. 40.9 s) and significantly fewer false assessments of structures at risk (7.4 % vs. 10.3 %) compared to a currently employed 3D visualization. Furthermore, the animation supports timely perception of the course and depth of upcoming blood vessels, and helps to detect possible areas at risk along the path in advance. Hence, the obtained results demonstrate that our proposed interactive map displays exhibit potential to improve the outcome of navigated liver interventions.