EnvirVis18
Permanent URI for this collection
Browse
Browsing EnvirVis18 by Subject "Information retrieval"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Predict Saturated Thickness using TensorBoard Visualization(The Eurographics Association, 2018) Nguyen, Vinh The; Dang, Tommy; Jin, Fang; Karsten Rink and Dirk Zeckzer and Roxana Bujack and Stefan JänickeWater plays a critical role in our living and manufacturing activities. The continuously growing exploitation of water over the aquifer poses a risk for over-extraction and pollution, leading to many negative effects on land irrigation. Therefore, predicting aquifer water level accurately is urgently important, which can help us prepare water demands ahead of time. In this study, we employ the Long-Short Term Memory (LSTM) model to predict the saturated thickness of an aquifer in the Southern High Plains Aquifer System in Texas, and exploit TensorBoard as a guide for model configurations. The Root Mean Squared Error of this study shows that the LSTM model can provide a good prediction capability using multiple data sources, and provides a good visualization tool to help us understand and evaluate the model configuration.