NPAR: Non-Photorealistic Animation and Rendering
Permanent URI for this community
Browse
Browsing NPAR: Non-Photorealistic Animation and Rendering by Subject "based artistic rendering"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Neural Style Transfer: A Paradigm Shift for Image-based Artistic Rendering?(Association for Computing Machinery, Inc (ACM), 2017) Semmo, Amir; Isenberg, Tobias; Döllner, Jürgen; Holger Winnemoeller and Lyn BartramIn this meta paper we discussimage-based artistic rendering (IB-AR)based onneural style transfer(NST) and argue, while NST may represent a paradigm shift for IB-AR, that it also has to evolve as an interactive tool that considers the design aspects and mecha- nisms of artwork production. IB-AR received signifficant attention in the past decades for visual communication, covering a plethora of techniques to mimic the appeal of artistic media. Example-based renderingrepresents one the most promising paradigms in IB-AR to (semi-)automatically simulate artistic media with high fidelity, but so far has been limited because it relies on pre-defined image pairs for training or informs only low-level image features for texture transfers. Advancements in deep learning showed to alleviate these limitations by matching content and style statistics via activations of neural network layers, thus making a generalized style trans- fer practicable. We categorize style transfers within the taxonomy of IB-AR, then propose a semiotic structure to derive a technical research agenda for NSTs with respect to the grand challenges of NPAR. We finally discuss the potentials of NSTs, thereby identifying applications such as casual creativity and art production.