Italian Chapter Conference 2016 - Smart Tools and Apps in computer Graphics
Permanent URI for this collection
Browse
Browsing Italian Chapter Conference 2016 - Smart Tools and Apps in computer Graphics by Subject "I.3.3 [Computer Graphics]"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 3D Digital Imaging for Knowledge Dissemination of Greek Archaic Statuary(The Eurographics Association, 2016) Stanco, Filippo; Tanasi, Davide; Allegra, Dario; Milotta, Filippo L. M.; Giovanni Pintore and Filippo StancoThis paper aims, using a research exercise, to verify the association between two Greek sculptures collected at different times: the head of a boy collected in the Chalcidian colony of Leontinoi in southeastern Sicily, acquired in the 18th century and later kept in the collection of the Museum of Castello Ursino in Catania, and a torso, retrieved in 1904 and since then displayed in the Archaeological Museum of Sicily. The two pieces share similar stylistic features and represent the most significant example of Greek sculpture in Sicily at the end of the 6th century BC. Their association is an open problem still debated by scholars, who have based their studies on comparisons between pictures as a reassembly of two artefacts was never attempted. This critical issue has conditioned curators of the two museums, who could not develop a proper communication policy for the two objects, resulting in a limited cognitive accessibility for the public. By means of 3D scanning techniques, this contribution showcases how virtual restoration can not only improve interpretations of the scholars, but also boost the communication plans of museums, giving back to the public via a web platform a masterpiece of Greek sculpture known just by specialists.Item Anisotropic MatCap: Easy Capture and Reproduction of Anisotropic Materials(The Eurographics Association, 2016) Magri, Dario; Cignoni, Paolo; Tarini, Marco; Giovanni Pintore and Filippo StancoWe propose Anisotropic MatCap, a simple data structure based on a small volumetric texture that is able to represent, under a fixed lighting, the behavior of anisotropic materials. The data structure is designed to allow fast and practical capture of real-world anisotropic materials (like for example fabrics) and to be used in real-time renderings, requiring only negligible time and texture memory overheads. The resulting technique is suited for application scenarios where digital objects must be inspected by an end user, recreating the look of an object made of a captured anisotropic material and seen under the predetermined lighting conditions. The technique proved particularly useful for garments and cloth visualization and design.Item Design and Fabrication of Grid-shells Mockups(The Eurographics Association, 2016) Tonelli, Davide; Pietroni, Nico; Cignoni, Paolo; Scopigno, Roberto; Giovanni Pintore and Filippo StancoStatics Aware Voronoi Grid-shells have been recently introduced in the Architectural Geometry field. These are innovative gridshells endowed with a polygonal topology, whose geometry is structurally optimized by means of a novel algorithm [PTP+15]. Although being structurally effective as proved in [TPP+16] and arguably aesthetically charming, so far these grid-shells have struggled to attract architects' interest. We propose a method to fabricate a mockup of the grid shell by using modern additive 3D printing and laser cutting technologies. We also show how the realised mockup can be used to perform a preliminary validation of the simulated static performances of the grid-shell structure.Item Low Cost Handheld 3D Scanning for Architectural Elements Acquisition(The Eurographics Association, 2016) Allegra, Dario; Gallo, Giovanni; Inzerillo, Laura; Lombardo, Marcella; Milotta, Filippo L. M.; Santagati, Cettina; Stanco, Filippo; Giovanni Pintore and Filippo Stanco3D scanning has gone a long way since its first appearance in cultural heritage digitization and modeling. In the recent years some new low cost, fast, accurate emerging technologies are flooding the market. Envisioning the massive use of these cheap and easy to use devices in the next years, it is crucial to explore the possible fields of application and to test their effectiveness in terms of easiness of 3D data collection, processing, mesh resolution and metric accuracy against the size and features of the objects. In this study we focus the attention on one emerging technology, the Structure Sensor device, in order to verify a 3D pipeline acquisition on an architectural element and its details. The methodological approach is thought to define a pipeline of 3D acquisition exploiting low cost and open source technologies and foresees the assessment of this procedure in comparison with data obtained by a Time of Flight device.Item Selective Rasterized Ray-traced Reflections on the GPU(The Eurographics Association, 2016) Kastrati, Mattias Frid; Goswami, Prashant; Giovanni Pintore and Filippo StancoRay-tracing achieves impressive effects such as realistic reflections on complex surfaces but is also more computationally expensive than classic rasterization. Rasterized ray-tracing methods can accelerate ray-tracing by taking advantage of the massive parallelization available in the rasterization pipeline on the GPU. In this paper, we propose a selective rasterized raytracing method that optimizes the rasterized ray-tracing by selectively allocating computational resources to reflective regions in the image. Our experiments suggest that the method can speed-up the computation by up to 4 times and also reduce the memory footprint by almost 66% without affecting the image quality. We demonstrate the effectiveness of our method using complex scenes and animations.