Machine Learning Methods in Visualisation for Big Data
Permanent URI for this community
Browse
Browsing Machine Learning Methods in Visualisation for Big Data by Subject "concepts and models"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item ModelSpeX: Model Specification Using Explainable Artificial Intelligence Methods(The Eurographics Association, 2020) Schlegel, Udo; Cakmak, Eren; Keim, Daniel A.; Archambault, Daniel and Nabney, Ian and Peltonen, JaakkoExplainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.