Rendering - Experimental Ideas & Implementations 2015
Permanent URI for this collection
Browse
Browsing Rendering - Experimental Ideas & Implementations 2015 by Subject "Display Algorithms"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Practical Shading of Height Fields and Meshes using Spherical Harmonic Exponentiation(The Eurographics Association, 2015) Giraud, Aude; Nowrouzezahrai, Derek; Jaakko Lehtinen and Derek NowrouzezahraiInteractively computing smooth shading effects from environmental lighting, such as soft shadows and glossy reflections, is a challenge in scenes with dynamic objects. We present a method to efficiently approximate these effects in scenes comprising animating objects and dynamic height fields, additionally allowing interactive manipulation of view and lighting. Our method extends spherical harmonic (SH) exponentiation approaches to support environmental shadowing from both dynamic blockers and dynamic height field geometry. We also derive analytic expressions for the view-evaluated BRDF, directly in the log-SH space, in order to support diffuse-to-glossy shadowed reflections while avoiding expensive basis-space product operations. We illustrate interactive rendering results using a hybrid, multi-resolution screen- and object-space visibility-marching algorithm that decouples geometric complexity from shading complexity.Item Stereo from Shading(The Eurographics Association, 2015) Chapiro, Alexandre; O'Sullivan, Carol; Jarosz, Wojciech; Gross, Markus; Smolic, Aljoscha; Jaakko Lehtinen and Derek NowrouzezahraiWe present a new method for creating and enhancing the stereoscopic 3D (S3D) sensation without using the parallax disparity between an image pair. S3D relies on a combination of cues to generate a feeling of depth, but only a few of these cues can easily be modified within a rendering pipeline without significantly changing the content. We explore one such cue-shading stereopsis-which to date has not been exploited for 3D rendering. By changing only the shading of objects between the left and right eye renders, we generate a noticeable increase in perceived depth. This effect can be used to create depth when applied to flat images, and to enhance depth when applied to shallow depth S3D images. Our method modifies the shading normals of objects or materials, such that it can be flexibly and selectively applied in complex scenes with arbitrary numbers and types of lights and indirect illumination. Our results show examples of rendered stills and video, as well as live action footage.