EG2014 - Short Papers
Permanent URI for this collection
Browse
Browsing EG2014 - Short Papers by Subject "I.4.8 [Image Processing and Computer Vision]"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Tone Reproduction Operator for All Luminance Ranges Considering Human Color Perception(The Eurographics Association, 2014) Mikamo, Michihiro; Raytchev, Bisser; Tamaki, Toru; Kaneda, Kazufumi; Eric Galin and Michael WandIn this paper, we present a novel tone reproduction operator that is able to handle the color shift that occurs in photopic, mesopic, and scotopic vision, using a model based on a two-stage model of human color vision and psychophysical data obtained from measurements of human color perception. Since conventional methods are limited to generating images under a certain visual condition, it is difficult to apply just one operator to deal with scenes with continuous change within a wide luminance range, such as various scenes in movies. To overcome this problem, we have developed a model based on psychophysical data involving wavelength discrimination within a wide luminance range, which provides us with clues about the change of color perception. That is, the spectral sensitivity shifts toward the short wavelengths and decreases according to the adaptation light levels. By integrating the wavelength discrimination into our model, the proposed operator enables us to compute the transition of color perception under a wide range of viewing conditions.Item Unified Skeletal Animation Reconstruction with Multiple Kinects(The Eurographics Association, 2014) Ahmed, Naveed; Eric Galin and Michael WandWe present a new method for reconstructing a unified skeletal animation with multiple Kinects. Our method is able to reconstruct the unified skeletal animation from Kinect data over 360 degrees. We make use of all three streams: RGB, depth and skeleton, along with the joint tracking confidence state from Microsoft Kinect SDK to find the correctly oriented skeletons and merge them together to get a uniform animation. Our method is easy to implement and provides a simple solution of creating a 360 degree plausible unified skeletal animation that would not be possible to capture with a single Kinect due to occlusions, tracking failures, and field of view constraints.