EGPGV20: Eurographics Symposium on Parallel Graphics and Visualization
Permanent URI for this collection
Browse
Browsing EGPGV20: Eurographics Symposium on Parallel Graphics and Visualization by Subject "Ray tracing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effective Parallelization Strategies for Scalable, High-Performance Iterative Reconstruction(The Eurographics Association, 2020) Gribble, Christiaan Paul; Frey, Steffen and Huang, Jian and Sadlo, FilipIterative reconstruction techniques in X-ray computed tomography converge to a result by successively refining increasingly accurate estimates. Compared to alternative approaches, iterative reconstruction imposes significant computational demand but generally leads to higher reconstruction quality and is more robust to inherently imperfect scan data. We explore several strategies for exploiting parallelism in iterative reconstruction and evaluate their scalability and performance on modern workstation-class systems. Results show that scalable, high performance iterative reconstruction is possible with careful attention to the expression of parallelism in both the projection and backprojection phases of computation.Item Finding Efficient Spatial Distributions for Massively Instanced 3-d Models(The Eurographics Association, 2020) Zellmann, Stefan; Morrical, Nate; Wald, Ingo; Pascucci, Valerio; Frey, Steffen and Huang, Jian and Sadlo, FilipInstancing is commonly used to reduce the memory footprint of massive 3-d models. Nevertheless, large production assets often do not fit into the memory allocated to a single rendering node or into the video memory of a single GPU. For memory intensive scenes like these, distributed rendering can be helpful. However, finding efficient data distributions for these instanced 3-d models is challenging, since a memory-efficient data distribution often results in an inefficient spatial distribution, and vice versa. Therefore, we propose a k-d tree construction algorithm that balances these two opposing goals and evaluate our scene distribution approach using publicly available instanced 3-d models like Disney's Moana Island Scene.Item High-Quality Rendering of Glyphs Using Hardware-Accelerated Ray Tracing(The Eurographics Association, 2020) Zellmann, Stefan; Aumüller, Martin; Marshak, Nathan; Wald, Ingo; Frey, Steffen and Huang, Jian and Sadlo, FilipGlyph rendering is an important scientific visualization technique for 3D, time-varying simulation data and for higherdimensional data in general. Though conceptually simple, there are several different challenges when realizing glyph rendering on top of triangle rasterization APIs, such as possibly prohibitive polygon counts, limitations of what shapes can be used for the glyphs, issues with visual clutter, etc. In this paper, we investigate the use of hardware ray tracing for high-quality, highperformance glyph rendering, and show that this not only leads to a more flexible and often more elegant solution for dealing with number and shape of glyphs, but that this can also help address visual clutter, and even provide additional visual cues that can enhance understanding of the dataset.