EG 2021 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2021 - Short Papers by Subject "Computing methodologies"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Auto-rigging 3D Bipedal Characters in Arbitrary Poses(The Eurographics Association, 2021) Kim, Jeonghwan; Son, Hyeontae; Bae, Jinseok; Kim, Young Min; Theisel, Holger and Wimmer, MichaelWe present an end-to-end algorithm that can automatically rig a given 3D character such that it is ready for 3D animation. The animation of a virtual character requires the skeletal motion defined with bones and joints, and the corresponding deformation of the mesh represented with skin weights. While the conventional animation pipeline requires the initial 3D character to be in the predefined default pose, our pipeline can rig a 3D character in arbitrary pose. We handle the increased ambiguity by fixing the skeletal topology and solving for the full deformation space. After the skeletal positions and orientations are fully discovered, we can deform the provided 3D character into the default pose, from which we can animate the character with the help of recent motion-retargeting techniques. Our results show that we can successfully animate initially deformed characters, which was not possible with previous works.Item Data-driven Garment Pattern Estimation from 3D Geometries(The Eurographics Association, 2021) Goto, Chihiro; Umetani, Nobuyuki; Theisel, Holger and Wimmer, MichaelThree-dimensional scanning technology recently becomes widely available to the public. However, it is difficult to simulate clothing deformation from the scanned people because scanned data lacks information required for the clothing simulation. In this paper, we present a technique to estimate clothing patterns from a scanned person in cloth. Our technique uses image-based deep learning to estimate the type of pattern on the projected image. The key contribution is converting image-based inference into three-dimensional clothing pattern estimation. We evaluate our technique by applying our technique to an actual scan.Item Interactive Finite Element Model of Needle Insertion and Laceration(The Eurographics Association, 2021) Perrusi, Pedro Henrique Suruagy; Baksic, Paul; Courtecuisse, Hadrien; Theisel, Holger and Wimmer, MichaelThis paper introduces an interactive model of needle insertion, including the possibility to simulate lacerations of tissue around the needle. The method relies on complementary constraints to couple the Finite Element models of the needle and tissue. The cutting path is generated from mechanical criteria (i.e. cutting force) at arbitrary resolution, avoiding expensive remeshing of Finite Element meshes. Complex behavior can be simulated in real time such as friction along the shaft of the needle, puncture and cutting force resulting from interactions of the needle with the tissue. The method is illustrated both in an interactive simulation of a needle insertion/cutting and in a robotic needle insertion in liver tissue during the breathing motion.Item Interactive Simulation for easy Decision-making in Fluid Dynamics(The Eurographics Association, 2021) Wang, Mengchen; Férey, Nicolas; Magoulès, Frédéric; Bourdot, Patrick; Theisel, Holger and Wimmer, MichaelA conventional study of fluid simulation involves different stages including conception, simulation, visualization, and analysis tasks. It is, therefore, necessary to switch between different software and interactive contexts which implies costly data manipulation and increases the time needed for decision making. Our interactive simulation approach was designed to shorten this loop, allowing users to visualize and steer a simulation in progress without waiting for the end of the simulation. The methodology allows the users to control, start, pause, or stop a simulation in progress, to change global physical parameters, to interact with its 3D environment by editing boundary conditions such as walls or obstacles. This approach is made possible by using a methodology such as the Lattice Boltzmann Method (LBM) to achieve interactive time while remaining physically relevant. In this work, we present our platform dedicated to interactive fluid simulation based on LBM. The contribution of our interactive simulation approach to decision making will be evaluated in a study based on a simple but realistic use case.Item Interactive Synthesis of 3D Geometries of Blood Vessels(The Eurographics Association, 2021) Rauch, Nikolaus; Harders, Matthias; Theisel, Holger and Wimmer, MichaelIn surgical training simulators, where various organ surfaces make up the majority of the scene, the visual appearance is highly dependent on the quality of the surface textures. Blood vessels are an important detail in this; they need to be incorporated into an organ's texture. Moreover, the actual blood vessel geometries also have to be part of the simulated surgical procedure itself, e.g. during cutting. Since the manual creation of vessel geometry or branching details on textures is highly tedious, an automatic synthesis technique capable of generating a wide range of blood vessel patterns is needed.We propose a new synthesis approach based on the space colonization algorithm. As extension, physiological constraints on the proliferation of branches are enforced to create realistic vascular structures. Our framework is capable of generating three-dimensional blood vessel networks in a matter of milliseconds, thus allowing a 3D modeller to tweak parameters in real-time to obtain a desired appearance.Item Modeling and Actuation of Cable-driven Silicone Soft Robots(The Eurographics Association, 2021) Frâncu, Mihail; Theisel, Holger and Wimmer, MichaelIn this paper we present a framework for modeling cable-driven soft robots fabricated from silicone rubber - an incompressible material. Our forward simulation model can use either the standard or the mixed formulation of the finite element method (FEM). The latter prevents volumetric locking for incompressible materials and is more accurate for low resolution meshes. Hence, we show that mixed FEM is well suited for estimating elastic parameters and simulator validation. We also introduce a cable actuation model using barycentric coordinates and then use it to solve some simple control problems.Item Ray Tracing Lossy Compressed Grid Primitives(The Eurographics Association, 2021) Benthin, Carsten; Vaidyanathan, Karthik; Woop, Sven; Theisel, Holger and Wimmer, MichaelWe propose a new watertight representation of geometry for ray tracing highly complex scenes in a memory efficient manner. Polygon meshes in the scene are first converted into compressed grid primitives, which are represented by a base bilinear patch with quantized displacement vectors. Ray-scene intersections are then computed by efficiently decompressing these grids onthe- fly and intersecting the implicit triangles. Our representation requires just 5:4??6:6 bytes per triangle for the combined geometry and acceleration structure, resulting in a 5-7x reduction in memory footprint compared to indexed triangle meshes. This is achieved with less than 15% increase in rendering time.Item Robust Image Denoising using Kernel Predicting Networks(The Eurographics Association, 2021) Cai, Zhilin; Zhang, Yang; Manzi, Marco; Oztireli, Cengiz; Gross, Markus; Aydin, Tunç Ozan; Theisel, Holger and Wimmer, MichaelWe present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images. Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise.Item Tight Normal Cone Merging for Efficient Collision Detection of Thin Deformable Objects(The Eurographics Association, 2021) Han, Dong-Hoon; Lee, Chang-Jin; Lee, Sangbin; Ko, Hyeong-Seok; Theisel, Holger and Wimmer, MichaelWhen simulating thin deformable objects such as clothes, collision detection alone takes a lot of computation. One way of reducing the computation is culling false-positives as much as possible. In the context of bounding volume hierarchy, Provot proposed a culling method that is based on hierarchical merging of normal enclosing cones. In this work, we investigate Provot's merging algorithm and show that there is some room for improvement. We propose a new merging algorithm, in the context of discrete collision detection, which always produces an equal or tighter mergence than Provot's merging. We extend the above algorithm so that it can be used in the context of continuous collision detection. Experiments show that the proposed method makes about 25% reduction in the number of triangle pairs for which vertex-triangle or edge-edge collision test has to be performed, and 18% reduction in time for collision detection.Item Visual Analysis of Point Cloud Neighborhoods via Multi-Scale Geometric Measures(The Eurographics Association, 2021) Ritter, Marcel; Schiffner, Daniel; Harders, Matthias; Theisel, Holger and Wimmer, MichaelPoint sets are a widely used spatial data structure in computational and observational domains, e.g. in physics particle simulations, computer graphics or remote sensing. Algorithms typically operate in local neighborhoods of point sets, for computing physical states, surface reconstructions, etc. We present a visualization technique based on multi-scale geometric features of such point clouds. We explore properties of different choices on the underlying weighted co-variance neighborhood descriptor, illustrated on different point set geometries and for varying noise levels. The impact of different weighting functions and tensor centroids, as well as point set features and noise levels becomes visible in the rotation-invariant feature images. We compare to a curvature based scale space visualization method and, finally, show how features in real-world LiDAR data can be inspected by images created with our approach in an interactive tool. In contrast to the curvature based approach, with our method line structures are highlighted over growing scales, with clear border regions to planar or spherical geometric structures.Item Visualizing Errors in Rendered High Dynamic Range Images(The Eurographics Association, 2021) Andersson, Pontus; Nilsson, Jim; Shirley, Peter; Akenine-Möller, Tomas; Theisel, Holger and Wimmer, MichaelA new error metric targeting rendered high dynamic range images is presented. Our method computes a composite visualization over a number of low dynamic range error maps of exposure compensated and tone mapped image pairs with automatically computed, or manually provided, parameters. We argue that our new error maps predict errors substantially better than metrics previously used in rendering. Source code is released with the hope that our work can be a useful tool for future research.