VCBM 19: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 19: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Health informatics"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Interactive Formation of Statistical Hypotheses in Diffusion Tensor Imaging(The Eurographics Association, 2019) Abbasloo, Amin; Wiens, Vitalis; Schmidt-Wilcke, Tobias; Sundgren, Pia; Klein, Reinhard; Schultz, Thomas; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaWhen Diffusion Tensor Imaging (DTI) is used in clinical studies, statistical hypothesis testing is the standard approach to establish significant differences between groups, such as patients and healthy controls. However, diffusion tensors contain six degrees of freedom, and the most commonly used univariate tests reduce them to a single scalar, such as Fractional Anisotropy. Multivariate tests that account for the full tensor information have been developed, but have not been widely adopted in practice. Based on analyzing the limitations of existing univariate and multivariate tests, we argue that it is beneficial to use a more flexible, steerable test. Therefore, we introduce a test that can be customized to include any subset of tensor attributes that are relevant to the analysis task at hand. We also present a visual analytics system that supports the exploratory task of customizing it to a specific scenario. Our system closely integrates quantitative analysis with suitable visualizations. It links spatial and abstract views to reveal clusters of strong differences, to relate them to the affected anatomical structures, and to visually compare the results of different tests. A use case is presented in which our system leads to the formation of several new hypotheses about the effects of systemic lupus erythematosus on water diffusion in the brain.Item Using Position-Based Dynamics for Simulating the Mitral Valve in a Decision Support System(The Eurographics Association, 2019) Walczak, Lars; Georgii, Joachim; Tautz, Lennart; Neugebauer, Mathias; Wamala, Isaac; Sündermann, Simon; Falk, Volkmar; Hennemuth, Anja; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaIn mitral valve interventions, surgeons have to select an optimal combination of techniques for every patient. Especially less experienced physicians would benefit from decision support for this process. To support the visual analysis of the patientspecific valvular dynamics and an in-silico pre-intervention simulation of different therapy options, a real-time simulation of the mitral valve is needed, especially for the use in a time-constrained clinical environment. We develop a simplified model of the mitral valve and propose a novel approach to simulate the mitral valve with position-based dynamics. As input, a mesh representation of the open-state mitral valve, two polygons representing the open and closed annulus states, simplified chordae tendineae, and a set of forces for approximating the surrounding blood are required. The mitral valve model can be deformed to simulate the closing and opening as well as incorporate changes caused by virtual interventions in the simulation. For evaluation, ten mitral valves were reconstructed from transesophageal echocardiogram sequences of patients with normal and abnormal physiology. Experts in cardiac surgery annotated anatomical landmarks for valve reconstruction. The simulation results for closing the valve were qualitatively compared to the anatomy depicted in the image sequences and, if present, the reproduction of a prolapse was verified. In addition, two virtual interventions (annuloplasty and clipping) were performed for one case and provided new insights about changes in valve closure and orifice area after modification. Each simulation ran at interactive frame rates. Our approach enables an efficient simulation of the mitral valve with normal and abnormal valve closing behavior as well as virtual interventions. The simulation results showed good agreements with the image data in general and reproduced valve closure in all cases. In three cases, prolapse was not or not correctly reproduced. Further research is needed to parameterize the model in pathologic cases.Item The Vitruvian Baby: Interactive Reformation of Fetal Ultrasound Data to a T-Position(The Eurographics Association, 2019) Mörth, Eric; Raidou, Renata Georgia; Viola, Ivan; Smit, Noeska; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaThree-dimensional (3D) ultrasound imaging and visualization is often used in medical diagnostics, especially in prenatal screening. Screening the development of the fetus is important to assess possible complications early on. State of the art approaches involve taking standardized measurements to compare them with standardized tables. The measurements are taken in a 2D slice view, where precise measurements can be difficult to acquire due to the fetal pose. Performing the analysis in a 3D view would enable the viewer to better discriminate between artefacts and representative information. Additionally making data comparable between different investigations and patients is a goal in medical imaging techniques and is often achieved by standardization. With this paper, we introduce a novel approach to provide a standardization method for 3D ultrasound fetus screenings. Our approach is called ''The Vitruvian Baby'' and incorporates a complete pipeline for standardized measuring in fetal 3D ultrasound. The input of the method is a 3D ultrasound screening of a fetus and the output is the fetus in a standardized T-pose. In this pose, taking measurements is easier and comparison of different fetuses is possible. In addition to the transformation of the 3D ultrasound data, we create an abstract representation of the fetus based on accurate measurements. We demonstrate the accuracy of our approach on simulated data where the ground truth is known.