42-Issue 4
Permanent URI for this collection
Browse
Browsing 42-Issue 4 by Subject "Image processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interactive Control over Temporal Consistency while Stylizing Video Streams(The Eurographics Association and John Wiley & Sons Ltd., 2023) Shekhar, Sumit; Reimann, Max; Hilscher, Moritz; Semmo, Amir; Döllner, Jürgen; Trapp, Matthias; Ritschel, Tobias; Weidlich, AndreaImage stylization has seen significant advancement and widespread interest over the years, leading to the development of a multitude of techniques. Extending these stylization techniques, such as Neural Style Transfer (NST), to videos is often achieved by applying them on a per-frame basis. However, per-frame stylization usually lacks temporal consistency, expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal consistency suffer from one or more of the following drawbacks: They (1) are only suitable for a limited range of techniques, (2) do not support online processing as they require the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency control. Domain-agnostic techniques for temporal consistency aim to eradicate flickering completely but typically disregard aesthetic aspects. For stylization tasks, however, consistency control is an essential requirement as a certain amount of flickering adds to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that stylizes video streams in real-time at full HD resolutions while providing interactive consistency control. We develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. Further, we employ an adaptive combination of local and global consistency features and enable interactive selection between them. Objective and subjective evaluations demonstrate that our method is superior to state-of-the-art video consistency approaches. maxreimann.github.io/stream-consistencyItem LoCoPalettes: Local Control for Palette-based Image Editing(The Eurographics Association and John Wiley & Sons Ltd., 2023) Chao, Cheng-Kang Ted; Klein, Jason; Tan, Jianchao; Echevarria, Jose; Gingold, Yotam; Ritschel, Tobias; Weidlich, AndreaPalette-based image editing takes advantage of the fact that color palettes are intuitive abstractions of images. They allow users to make global edits to an image by adjusting a small set of colors. Many algorithms have been proposed to compute color palettes and corresponding mixing weights. However, in many cases, especially in complex scenes, a single global palette may not adequately represent all potential objects of interest. Edits made using a single palette cannot be localized to specific semantic regions. We introduce an adaptive solution to the usability problem based on optimizing RGB palette colors to achieve arbitrary image-space constraints and automatically splitting the image into semantic sub-regions with more representative local palettes when the constraints cannot be satisfied. Our algorithm automatically decomposes a given image into a semantic hierarchy of soft segments. Difficult-to-achieve edits become straightforward with our method. Our results show the flexibility, control, and generality of our method.