EGGH97: SIGGRAPH/Eurographics Workshop on Graphics Hardware 1997
Permanent URI for this collection
Browse
Browsing EGGH97: SIGGRAPH/Eurographics Workshop on Graphics Hardware 1997 by Subject "1.3.1 [Computer Graphics]"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Codesign Of Graphics Hardware Accelerators(The Eurographics Association, 1997) Ewins, Jon P.; L.Watten, Phil; White, Martin; McNeill, Michael D. J.; Lister, Paul F.; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderThe design of a hardware architecture for a computer graphics pipeline requires a thorough understanding of the algorithms involved at each stage, and the implications these algorithms have on the organisation of the pipeline architecture. The choice of algorithm, the flow of pixel data through the pipeline, and bit width precision issues are crucial decisions in the design of new hardware accelerators. Making these decisions correctly requires intensive investigation and experimentation. The use of hardware description languages such as VHDL, allow for sound top down design methodologies, but their effectiveness in such experimental work is limited. This paper discusses the use of software tools as an aid to hardware development and presents applications that demonstrate the possibilities of this approach and the benefits that can be attained from an integrated codesign design environment.Item Memory Access Patterns of Occlusion-Compatible 3D Image Warping(The Eurographics Association, 1997) Murk, William R.; Bishop, Gary; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderMcMillan and Bishop s 3D image warp can be efficiently implemented by exploiting the coherency of its memory accesses. We analyze this coherency, and present algorithms that take advantage of it. These algorithms traverse the reference image in an occlusion-compatible order, which is an order that can resolve visibility using a painter s algorithm. Required cache sizes are calculated for several one-pass 3D warp algorithms, and we develop a two-pass algorithm which requires a smaller cache size than any of the practical one-pass algorithms. We also show that reference image traversal orders that are occlusion-compatible for continuous images are not always occlusion-compatible when applied to the discrete images used in practice.Item PixelFlow: The Realization(The Eurographics Association, 1997) Eyles, John; Molnar, Steven; Poulton, John; Greer, Trey; Lastra, Anselmo; England, Nick; Westover, Lee; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderPixelFlow is an architecture for high-speed, highly realistic image generation, based on the techniques of object-parallelism and image composition. Its initial architecture was described in [MOLN92]. After development by the original team of researchers at the University of North Carolina, and codevelopment with industry partners, Division Ltd. and Hewlett- Packard, PixelFlow now is a much more capable system than initially conceived and its hardware and software systems have evolved considerably. This paper describes the final realization of PixelFlow, along with hardware and software enhancements heretofore unpublished.Item Realizing OpenGL: Two Implementations of One Architecture(The Eurographics Association, 1997) Kilgard, Mark J.; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderThe OpenGL Graphics System provides a well-specified, widely accepted dataflow for 3D graphics and imaging. OpenGL is an architecture; an OpenGL-capable computer is a hardware manifestation or implementaion of that architecture. The Onyx2 InfiniteReality and 02 workstations exemplify two very different implementations of OpenGL. The two designs respond to different cost, performance, and capability goals. Common practice is to describe a graphics hardware implementation based on how the hardware itself operates. However, this paper discusses two OpenGL hardware implementations based on how they embody the OpenGL architecture. An important thread throughout is how OpenGL implementations can be designed not merely based on graphics price-performance considerations, but also with consideration of larger system issues such as memory architecture, compression, and video processing. Just as OpenGL is influenced by wider system concerns, OpenGL itself can provide a clarifying influence on system capabilities not conventionally thought of as graphics-related.Item Towards Real-Time Photorealistic Rendering: Challenges and Solutions(The Eurographics Association, 1997) Schilling, Andreas; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderA growing number of real-time applications need graphics with photorealistic quality, especially in the field of training (virtual operation, driving and flightsimulation), but also in the areas of design or ergonomic research. We take a closer look at main deficiencies of today s real time graphics hardware and present solutions for several of the identified problems in the areas of antialiasing and texture-. bump- and reflection mapping. In the second part of the paper, a new method for antialiasing bump maps is explained in more detail.Item VIZARD - Visualization Accelerator for Realtime Display(The Eurographics Association, 1997) Knittel, Günter; Straßer, Wolfgang; A. Kaufmann and W. Strasser and S. Molnar and B.-O. SchneiderVolume rendering has traditionally been an application for supercomputers, workstation networks or expensive special-purpose hardware. In contrast, this report shows how far we have reached using the other extreme: the low-end PC platform. We have alleviated the mismatch between this demanding application and the limited computational resources of a PC in three ways: several stages in the visualization pipeline are placed into a preprocessing step, the volume rendering algorithm was optimized using a special data compression scheme, and the algorithm has been implemented in hardware as a PCI-compatible coprocessor (lXZ,4RD). These methods give us a frame rate of up to 1OHz for 256 <sup>3</sup> data sets and an acceptable image quality, although the accelerator prototype was built using relatively slow FPGA-technology. In a low-cost environment a coprocessor must not be more expensive than the host itself, and so VIZARD was designed to be manufacturable for a few hundred dollars. The special data compression scheme allows the data set to be placed into the main memory of the PC and eliminates the need for an expensive, separate volume memory. The entire visualization system consists of a portable PC with two built-in accelerator boards. Despite its small size, the system provides perspective raycasting for realtime walk-throughs. Additional features include stereoscopic viewing using shutter glasses and volume animation.