EuroVA19
Permanent URI for this collection
Browse
Browsing EuroVA19 by Subject "Progressive computation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item On Quality Indicators for Progressive Visual Analytics(The Eurographics Association, 2019) Angelini, Marco; May, Thorsten; Santucci, Giuseppe; Schulz, Hans-Jörg; Landesberger, Tatiana von and Turkay, CagatayA key component in using Progressive Visual Analytics (PVA) is to be able to gauge the quality of intermediate analysis outcomes. This is necessary in order to decide whether a current partial outcome is already good enough to cut a long-running computation short and to proceed. To aid in this process, we propose ten fundamental quality indicators that can be computed and displayed to gain a better understanding of the progress of the progression and of the stability and certainty of an intermediate outcome. We further highlight the use of these fundamental indicators to derive other quality indicators, and we show how to apply the indicators in two use cases.