Pyramid Multi-View Stereo with Local Consistency
Loading...
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association and John Wiley & Sons Ltd.
Abstract
In this paper, we propose a PatchMatch-based Multi-View Stereo (MVS) algorithm which can efficiently estimate geometry for the textureless area. Conventional PatchMatch-based MVS algorithms estimate depth and normal hypotheses mainly by optimizing photometric consistency metrics between patch in the reference image and its projection on other images. The photometric consistency works well in textured regions but can not discriminate textureless regions, which makes geometry estimation for textureless regions hard work. To address this issue, we introduce the local consistency. Based on the assumption that neighboring pixels with similar colors likely belong to the same surface and share approximate depth-normal values, local consistency guides the depth and normal estimation with geometry from neighboring pixels with similar colors. To fasten the convergence of pixelwise local consistency across the image, we further introduce a pyramid architecture similar to previous work which can also provide coarse estimation at upper levels. We validate the effectiveness of our method on the ETH3D benchmark and Tanks and Temples benchmark. Results show that our method outperforms the state-of-the-art.
Description
@article{10.1111:cgf.13841,
journal = {Computer Graphics Forum},
title = {{Pyramid Multi-View Stereo with Local Consistency}},
author = {Liao, Jie and Fu, Yanping and Yan, Qingan and Xiao, Chunxia},
year = {2019},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13841}
}