Interactive Stable Ray Tracing
Loading...
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
ACM
Abstract
Interactive ray tracing applications running on commodity hard- ware can su er from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-processing lters. Our technique is based on sample reprojection and explicit hole lling, rather than relying on hole- lling heuristics that can compromise image quality. We make reprojection practical in an interactive ray tracing context through the use of a super-resolution bitmask to estimate screen space sample density. We show signi cantly improved temporal stability as compared with supersampling and an existing reprojec- tion techniques. We also investigate the performance and image quality di erences between our technique and temporal antialias- ing, which typically incurs a signi cant amount of blur. Finally, we demonstrate the bene ts of stable ray tracing by combining it with progressive path tracing of indirect illumination.
Description
@inproceedings{10.1145:3105762.3105769,
booktitle = {Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics},
editor = {Vlastimil Havran and Karthik Vaiyanathan},
title = {{Interactive Stable Ray Tracing}},
author = {Corso, Alessandro Dal and Salvi, Marco and Kolb, Craig and Frisvad, Jeppe Revall and Lefohn, Aaron and Luebke, David},
year = {2017},
publisher = {ACM},
ISSN = {2079-8679},
ISBN = {978-1-4503-5101-0},
DOI = {10.1145/3105762.3105769}
}