Learning to Predict Aboveground Biomass from RGB Images with 3D Synthetic Scenes
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
Forests play a critical role in global ecosystems by supporting biodiversity and mitigating climate change via carbon sequestration. Accurate aboveground biomass (AGB) estimation is essential for assessing carbon storage and wildfire fuel loads, yet traditional methods rely on labor-intensive field measurements or remote sensing approaches with significant limitations in dense vegetation. In this work, we propose a novel learning-based method for estimating AGB from a single ground-based RGB image. We frame this as a dense prediction task, introducing AGB density maps, where each pixel represents tree biomass normalized by the plot area and each tree's image area. We leverage the recently introduced synthetic 3D SPREAD dataset, which provides realistic forest scenes with per-image tree attributes (height, trunk and canopy diameter) and instance segmentation masks. Using these assets, we compute AGB via allometric equations and train a model to predict AGB density maps, integrating them to recover the AGB estimate for the captured scene. Our approach achieves a median AGB estimation error of 1:22kg=m2 on held-out SPREAD data and 1:94kg=m2 on a real-image dataset. To our knowledge, this is the first method to estimate aboveground biomass directly from a single RGB image, opening up the possibility for a scalable, interpretable, and cost-effective solution for forest monitoring, while also enabling broader participation through citizen science initiatives.
Description
@inproceedings{10.2312:stag.20251328,
booktitle = {Smart Tools and Applications in Graphics - Eurographics Italian Chapter Conference},
editor = {Comino Trinidad, Marc and Mancinelli, Claudio and Maggioli, Filippo and Romanengo, Chiara and Cabiddu, Daniela and Giorgi, Daniela},
title = {{Learning to Predict Aboveground Biomass from RGB Images with 3D Synthetic Scenes}},
author = {Zuffi, Silvia},
year = {2025},
publisher = {The Eurographics Association},
ISSN = {2617-4855},
ISBN = {978-3-03868-296-7},
DOI = {10.2312/stag.20251328}
}
