Content-Independent Multi-Spectral Display Using Superimposed Projections

dc.contributor.authorLi, Yuqien_US
dc.contributor.authorMajumder, Aditien_US
dc.contributor.authorLu, Dongmingen_US
dc.contributor.authorGopi, Meenakshisundaramen_US
dc.contributor.editorOlga Sorkine-Hornung and Michael Wimmeren_US
dc.date.accessioned2015-04-16T07:44:41Z
dc.date.available2015-04-16T07:44:41Z
dc.date.issued2015en_US
dc.description.abstractMany works focus on multi-spectral capture and analysis, but multi-spectral display still remains a challenge. Most prior works on multi-primary displays use ad-hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content-dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content-independent multi-spectral display achieved using superimposed projections with modified wide band primaries. We present a content-independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi-spectral display consisting of 9-primaries using three modified conventional 3-primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi-spectral images at a high spectral accuracy.en_US
dc.description.number2en_US
dc.description.sectionheadersAgile Hardwareen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume34en_US
dc.identifier.doi10.1111/cgf.12564en_US
dc.identifier.pages337-348en_US
dc.identifier.urihttps://doi.org/10.1111/cgf.12564en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture and Image Generationen_US
dc.subjectDisplay Algorithmsen_US
dc.subjectI.3.7 [Computer Graphics]en_US
dc.subjectThree Dimensional Graphics and Realismen_US
dc.subjectColoren_US
dc.subjectI.4.0 [Image Processing and Computer Vision]en_US
dc.subjectImage Displaysen_US
dc.titleContent-Independent Multi-Spectral Display Using Superimposed Projectionsen_US
Files