Stream Surface Parametrization by Flow-Orthogonal Front Lines
dc.contributor.author | Schulze, Maik | en_US |
dc.contributor.author | Germer, Tobias | en_US |
dc.contributor.author | Rössl, Christian | en_US |
dc.contributor.author | Theisel, Holger | en_US |
dc.contributor.editor | Eitan Grinspun and Niloy Mitra | en_US |
dc.date.accessioned | 2015-02-28T07:44:13Z | |
dc.date.available | 2015-02-28T07:44:13Z | |
dc.date.issued | 2012 | en_US |
dc.description.abstract | The generation of discrete stream surfaces is an important and challenging task in scientific visualization, which can be considered a particular instance of geometric modeling. The quality of numerically integrated stream surfaces depends on a number of parameters that can be controlled locally, such as time step or distance of adjacent vertices on the front line. In addition there is a parameter that cannot be controlled locally: stream surface meshes tend to show high quality, well-shaped elements only if the current front line is "globally" approximately perpendicular to the flow direction. We analyze the impact of this geometric property and present a novel solution a stream surface integrator that forces the front line to be perpendicular to the flow and that generates quaddominant meshes with well-shaped and well-aligned elements. It is based on the integration of a scaled version of the flow field, and requires repeated minimization of an error functional along the current front line. We show that this leads to computing the 1-dimensional kernel of a bidiagonal matrix: a linear problem that can be solved efficiently. We compare our method with existing stream surface integrators and apply it to a number of synthetic and real world data sets. | en_US |
dc.description.seriesinformation | Computer Graphics Forum | en_US |
dc.description.volume | 31 | |
dc.identifier.doi | 10.1111/j.1467-8659.2012.03177.x | |
dc.identifier.issn | 1467-8659 | en_US |
dc.identifier.uri | https://doi.org/10.1111/j.1467-8659.2012.03177.x | en_US |
dc.publisher | The Eurographics Association and Blackwell Publishing Ltd. | en_US |
dc.subject | I.3.5 [Computer Graphics] | en_US |
dc.subject | Computational Geometry and Object Modeling | en_US |
dc.subject | Curve | en_US |
dc.subject | surface | en_US |
dc.subject | solid | en_US |
dc.subject | and object representations | en_US |
dc.title | Stream Surface Parametrization by Flow-Orthogonal Front Lines | en_US |