Label Name is Mantra: Unifying Point Cloud Segmentation across Heterogeneous Datasets

dc.contributor.authorLiang, Yixunen_US
dc.contributor.authorHe, Haoen_US
dc.contributor.authorXiao, Shishien_US
dc.contributor.authorLu, Haoen_US
dc.contributor.authorChen, Yingcongen_US
dc.contributor.editorChen, Renjieen_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWhiting, Emilyen_US
dc.date.accessioned2024-10-13T18:03:15Z
dc.date.available2024-10-13T18:03:15Z
dc.date.issued2024
dc.description.abstractPoint cloud segmentation is a fundamental task in 3D vision that serves a wide range of applications. Despite recent advancements, its practical usability is still limited by the availability of training data. The prevalent methodologies cannot optimally exploit multiple datasets due to the inconsistency of labels across datasets. In this work, we introduce a robust method that accommodates learning from diverse datasets with variant label sets. We leverage a pre-trained language model to map discrete labels into a continuous latent space using their semantic names. This harmonizes labels across datasets, facilitating concurrent training. Contrarily, when classifying points within the continuous 3D space via their linguistic tokens, our model exhibits superior generalizability compared to extant methods with fixed decoder structures. Further, our approach assimilates prompt learning to alleviate data shifts across sources. Comprehensive evaluations attest that our model markedly surpasses current benchmarks.en_US
dc.description.sectionheadersPoint Cloud Processing and Analysis I
dc.description.seriesinformationPacific Graphics Conference Papers and Posters
dc.identifier.doi10.2312/pg.20241277
dc.identifier.isbn978-3-03868-250-9
dc.identifier.pages9 pages
dc.identifier.urihttps://doi.org/10.2312/pg.20241277
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/pg20241277
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Scene understanding; 3D imaging
dc.subjectComputing methodologies → Scene understanding
dc.subject3D imaging
dc.titleLabel Name is Mantra: Unifying Point Cloud Segmentation across Heterogeneous Datasetsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
pg20241277.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
paper1079_mm.pdf
Size:
993.64 KB
Format:
Adobe Portable Document Format