Structured Pattern Expansion with Diffusion Models

dc.contributor.authorRiso, Marziaen_US
dc.contributor.authorVecchio, Giuseppeen_US
dc.contributor.authorPellacini, Fabioen_US
dc.contributor.editorComino Trinidad, Marcen_US
dc.contributor.editorMancinelli, Claudioen_US
dc.contributor.editorMaggioli, Filippoen_US
dc.contributor.editorRomanengo, Chiaraen_US
dc.contributor.editorCabiddu, Danielaen_US
dc.contributor.editorGiorgi, Danielaen_US
dc.date.accessioned2025-11-21T07:28:17Z
dc.date.available2025-11-21T07:28:17Z
dc.date.issued2025
dc.description.abstractRecent advances in diffusion models have significantly improved the synthesis of materials, textures, and 3D shapes. By conditioning these models on text or images, users can guide the generation, reducing the time required to create digital assets. In this paper, we address the synthesis of structured, stationary patterns, where diffusion models are generally less reliable and, more importantly, less controllable. Our approach leverages the generative capabilities of diffusion models specifically adapted to the pattern domain. It enables users to exercise direct control over the synthesis by expanding a partially hand-drawn pattern into a larger design while preserving the structure and details of the input. To enhance pattern quality, we fine-tune an image-pretrained diffusion model on structured patterns using Low-Rank Adaptation (LoRA), apply a noise rolling technique to ensure tileability, and utilize a patch-based approach to facilitate the generation of large-scale assets. We demonstrate the effectiveness of our method through a comprehensive set of experiments, showing that it outperforms existing models in generating diverse, consistent patterns that respond directly to user input. Code will be released at publication time at: https://github.com/marzia-riso/structured_pattern_expansion.en_US
dc.description.sectionheadersLearning-based Algorithms
dc.description.seriesinformationSmart Tools and Applications in Graphics - Eurographics Italian Chapter Conference
dc.identifier.doi10.2312/stag.20251330
dc.identifier.isbn978-3-03868-296-7
dc.identifier.issn2617-4855
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.2312/stag.20251330
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/stag20251330
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Texturing
dc.subjectComputing methodologies → Texturing
dc.titleStructured Pattern Expansion with Diffusion Modelsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
stag20251330.pdf
Size:
11.67 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
stag_2025_supplementary_6470.pdf
Size:
7.77 MB
Format:
Adobe Portable Document Format