Towards Visual Mega-Analysis of Voxel-based Measurement in Brain Cohorts
dc.contributor.author | Zhang, Guohao | en_US |
dc.contributor.author | Kochunov, Peter | en_US |
dc.contributor.author | Hong, Elliot | en_US |
dc.contributor.author | Carr, Hamish | en_US |
dc.contributor.author | Chen, Jian | en_US |
dc.contributor.editor | Enrico Bertini and Niklas Elmqvist and Thomas Wischgoll | en_US |
dc.date.accessioned | 2016-06-09T09:42:26Z | |
dc.date.available | 2016-06-09T09:42:26Z | |
dc.date.issued | 2016 | en_US |
dc.description.abstract | We present a visualization prototype for comparative analysis of factional anisotropy (FA) distributions constructed from threedimensional (3D) brain diffusion tensor imaging (DTI) in brain cohorts. The prototype lets brain scientists examine metaanalysis (the pooled analysis of multiple smaller trials or multi-site studies) results for identifying differences in cohorts. Interactive side-by-side bar charts show multiple statistical results of FA comparisons in regions of interest (ROIs) defined by user-chosen atlas. An occlusion-free two-dimensional (2D) semantic merge tree further displays the global distribution of FA values. Two histograms on each tree arc reveal voxel-based FA distributions represented by that arc branch in cohorts. Interaction techniques support brushing-and-linking of local and global ROIs queries. ROIs can be defined from atlas or select through interaction. We report validation results in a case study and an interview. | en_US |
dc.description.sectionheaders | Medical Visualization | en_US |
dc.description.seriesinformation | EuroVis 2016 - Short Papers | en_US |
dc.identifier.doi | 10.2312/eurovisshort.20161161 | en_US |
dc.identifier.isbn | 978-3-03868-014-7 | en_US |
dc.identifier.issn | - | en_US |
dc.identifier.pages | 55-59 | en_US |
dc.identifier.uri | https://doi.org/10.2312/eurovisshort.20161161 | en_US |
dc.identifier.uri | https://diglib.eg.org:443/handle/10 | |
dc.publisher | The Eurographics Association | en_US |
dc.title | Towards Visual Mega-Analysis of Voxel-based Measurement in Brain Cohorts | en_US |