Combining Accumulated Frame Differencing and Corner Detection for Motion Detection
dc.contributor.author | Algethami, Nahlah | en_US |
dc.contributor.author | Redfern, Sam | en_US |
dc.contributor.editor | {Tam, Gary K. L. and Vidal, Franck | en_US |
dc.date.accessioned | 2018-09-19T15:15:01Z | |
dc.date.available | 2018-09-19T15:15:01Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Detecting and tracking people in a meeting room is very important for many applications. In order to detect people in a meeting room with no prior knowledge (e.g. background model) and regardless of whether their motion is slow or significant, this paper proposes a coarse-to-fine people detection algorithm by combining a novel motion detection process, namely, adaptive accumulated frame differencing (AAFD) combined with corner features. Firstly, the region of movement is extracted adaptively using AAFD, then motion corner features are extracted. Finally, the minimum area rectangle fitting these corners is found. The proposed algorithm is evaluated using the AMI meeting data set and this indicates promising results for people detection. | en_US |
dc.description.sectionheaders | Vision and Learning | |
dc.description.seriesinformation | Computer Graphics and Visual Computing (CGVC) | |
dc.identifier.doi | 10.2312/cgvc.20181202 | |
dc.identifier.isbn | 978-3-03868-071-0 | |
dc.identifier.pages | 7-14 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/cgvc20181202 | |
dc.identifier.uri | https://doi.org/10.2312/cgvc.20181202 | |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Computing methodologies | |
dc.subject | Tracking | |
dc.subject | Motion capture | |
dc.title | Combining Accumulated Frame Differencing and Corner Detection for Motion Detection | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 007-014.pdf
- Size:
- 1017.29 KB
- Format:
- Adobe Portable Document Format