Stability of Curvature Measures

dc.contributor.authorChazal, F.en_US
dc.contributor.authorCohen-Steiner, D.en_US
dc.contributor.authorLieutier, A.en_US
dc.contributor.authorThibert, B.en_US
dc.date.accessioned2015-02-23T15:43:33Z
dc.date.available2015-02-23T15:43:33Z
dc.date.issued2009en_US
dc.description.abstractWe address the problem of curvature estimation from sampled compact sets. The main contribution is a stability result: we show that the Gaussian, mean or anisotropic curvature measures of the offset of a compact set K with positive -reach can be estimated by the same curvature measures of the offset of a compact set K close to K in the Hausdorff sense. We show how these curvature measures can be computed for finite unions of balls. The curvature measures of the offset of a compact set with positive -reach can thus be approximated by the curvature measures of the offset of a point-cloud sample.en_US
dc.description.number5en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume28en_US
dc.identifier.doi10.1111/j.1467-8659.2009.01525.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages1485-1496en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2009.01525.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltden_US
dc.titleStability of Curvature Measuresen_US
Files