Gauss-Seidel Progressive Iterative Approximation (GS-PIA) for Loop Surface Interpolation

dc.contributor.authorWang, Zhihaoen_US
dc.contributor.authorLi, Yajuanen_US
dc.contributor.authorMa, Weiyinen_US
dc.contributor.authorDeng, Chongyangen_US
dc.contributor.editorFu, Hongbo and Ghosh, Abhijeet and Kopf, Johannesen_US
dc.date.accessioned2018-10-07T14:32:26Z
dc.date.available2018-10-07T14:32:26Z
dc.date.issued2018
dc.description.abstractWe propose a Gauss-Seidel progressive iterative approximation (GS-PIA) method for Loop subdivision surface interpolation by combining classical Gauss-Seidel iterative method for linear system and progressive iterative approximation (PIA) for data interpolation. We prove that GS-PIA is convergent by applying matrix theory. GS-PIA algorithm retains the good features of the classical PIA method, such as the resemblance with the given mesh and the advantages of both a local method and a global method. Compared with some existed interpolation methods of subdivision surfaces, GS-PIA algorithm has advantages in three aspects. First, it has a faster convergence rate compared with the PIA and WPIA algorithms. Second, compared with WPIA algorithm, GS-PIA algorithm need not to choose weights. Third, GS-PIA need not to modify the mesh topology compared with other methods with fairness measures. Numerical examples for Loop subdivision surfaces interpolation illustrated in this paper show the efficiency and effectiveness of GS-PIA algorithm.en_US
dc.description.sectionheadersSubdivision Surfaces
dc.description.seriesinformationPacific Graphics Short Papers
dc.identifier.doi10.2312/pg.20181284
dc.identifier.isbn978-3-03868-073-4
dc.identifier.pages73-76
dc.identifier.urihttps://doi.org/10.2312/pg.20181284
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20181284
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectParametric curve and surface models
dc.titleGauss-Seidel Progressive Iterative Approximation (GS-PIA) for Loop Surface Interpolationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
073-076.pdf
Size:
684.79 KB
Format:
Adobe Portable Document Format