Time Adaptive Approximate SPH
Loading...
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
In this paper, we present two different techniques to accelerate and approximate particle-based fluid simulations. The first technique identifies and employs larger time steps than dictated by the CFL condition. The second introduces the concept of approximation in the context of particle advection. For that, the fluid is segregated into active and inactive particles, and a significant amount of computation is saved on the passive particles. Using these two optimization techniques, our approach can achieve up to 7 times speed-up compared to a standard SPH method and it is compatible with other SPH improvement methods. We demonstrate the effectiveness of our method using up to one million particles and also compare it to standard SPH particle simulation visually and statistically.
Description
@inproceedings{:10.2312/PE/vriphys/vriphys11/019-028,
booktitle = {Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2011)},
editor = {Jan Bender and Kenny Erleben and Eric Galin},
title = {{Time Adaptive Approximate SPH}},
author = {Goswami, Prashant and Pajarola, Renato},
year = {2011},
publisher = {The Eurographics Association},
ISBN = {978-3-905673-87-6},
DOI = {/10.2312/PE/vriphys/vriphys11/019-028}
}