Eigenvalue Blending for Projected Newton

dc.contributor.authorCheng, Yuan-Yuanen_US
dc.contributor.authorLiu, Ligangen_US
dc.contributor.authorFu, Xiao-Mingen_US
dc.contributor.editorBousseau, Adrienen_US
dc.contributor.editorDay, Angelaen_US
dc.date.accessioned2025-05-09T09:11:29Z
dc.date.available2025-05-09T09:11:29Z
dc.date.issued2025
dc.description.abstractWe propose a novel method to filter eigenvalues for projected Newton. Central to our method is blending the clamped and absolute eigenvalues to adaptively compute the modified Hessian matrix. To determine the blending coefficients, we rely on (1) a key observation and (2) an objective function descent constraint. The observation is that if the quadratic form defined by the Hessian matrix maps the descent direction to a negative real number, the decrease in the objective function is limited. The constraint is that our eigenvalue filtering leads to more reduction in objective function than the absolute eigenvalue filtering [CLL∗24] in the case of second-order Taylor approximation. Our eigenvalue blending is easy to implement and leads to fewer optimization iterations than the state-of-the-art eigenvalue filtering methods.en_US
dc.description.number2
dc.description.sectionheadersSimulating Complex Systems: Turbulent, Crowded, and Shattered
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70027
dc.identifier.issn1467-8659
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70027
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70027
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Physical simulation
dc.subjectComputing methodologies → Physical simulation
dc.titleEigenvalue Blending for Projected Newtonen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cgf70027.pdf
Size:
54.85 MB
Format:
Adobe Portable Document Format