RIFNOM: 3D Rotation-Invariant Features on Normal Maps

dc.contributor.authorNakamura, Akihiroen_US
dc.contributor.authorMiyashita, Leoen_US
dc.contributor.authorWatanabe, Yoshihiroen_US
dc.contributor.authorIshikawa, Masatoshien_US
dc.contributor.editorJain, Eakta and Kosinka, Jiríen_US
dc.date.accessioned2018-04-14T18:29:55Z
dc.date.available2018-04-14T18:29:55Z
dc.date.issued2018
dc.description.abstractThis paper presents 3D rotation-invariant features on normal maps: RIFNOM.We assign a local coordinate system (CS) to each pixel by using neighbor normals to extract the 3D rotation-invariant features. These features can be used to perform interest point matching between normal maps. We can estimate 3D rotations between corresponding interest points by comparing local CSs. Experiments with normal maps of a rigid object showed the performance of the proposed method in estimating 3D rotations. We also applied the proposed method to a non-rigid object. By estimating 3D rotations between corresponding interest points, we successfully detected deformation of the object.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEG 2018 - Posters
dc.identifier.doi10.2312/egp.20181016
dc.identifier.issn1017-4656
dc.identifier.pages17-18
dc.identifier.urihttps://doi.org/10.2312/egp.20181016
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20181016
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectInterest point and salient region detections
dc.subjectMatching
dc.titleRIFNOM: 3D Rotation-Invariant Features on Normal Mapsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
017-018.pdf
Size:
9.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
poster.pdf
Size:
38.49 MB
Format:
Adobe Portable Document Format