Bayesian and Quasi Monte Carlo Spherical Integration for Illumination Integrals

Loading...
Thumbnail Image
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
The spherical sampling of the incident radiance function entails a high computational cost. Therefore the illumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. We need to ensure that sampling produces the highest amount of information possible by carefully placing the limited set of samples. Furthermore we want our integral evaluation to take into account not only the information produced by the sampling but also possible information available prior to sampling. In this tutorial we focus on the case of hemispherical sampling for spherical Monte Carlo (MC) integration. We will show that existing techniques can be improved by making a detailed analysis of the theory of MC spherical integration. We will then use this theory to identify and improve the weak points of current approaches, based on very recent advances in the fields of integration and spherical Quasi-Monte Carlo integration.
Description

        
@inproceedings{
:10.2312/egt.20141020
, booktitle = {
Eurographics 2014 - Tutorials
}, editor = {
Nicolas Holzschuch and Karol Myszkowski
}, title = {{
Bayesian and Quasi Monte Carlo Spherical Integration for Illumination Integrals
}}, author = {
Marques, Ricardo
and
Bouville, Christian
and
Bouatouch, Kadi
}, year = {
2014
}, publisher = {
The Eurographics Association
}, ISSN = {
1017-4656
}, ISBN = {}, DOI = {
/10.2312/egt.20141020
} }
Citation