Combining Details of the Chi-Square Goodness-of-Fit Test with Multivariate Data Visualization

dc.contributor.authorMay, Thorstenen_US
dc.contributor.authorDavey, Jamesen_US
dc.contributor.authorKohlhammer, Jörnen_US
dc.contributor.editorJoern Kohlhammer and Daniel Keimen_US
dc.date.accessioned2014-01-27T15:28:31Z
dc.date.available2014-01-27T15:28:31Z
dc.date.issued2010en_US
dc.description.abstractIn this work, we combine KVMaps, a visualization technique presented in [May07] for the visualization of statistical aggregations in multivariate contingency tables, with the measures used for the statistical Chi-Square goodness-of-fit test. Goodness-of-fit tests are used to check whether a given distribution of values matches an expected distribution. A single test statistic is calculated to represent the deviation of the complete dataset. By visualizing the deviations for all entries in the contingency table, it is possible to identify the patterns in the distribution of data items, which contribute most to the overall deviation of the dataset. We present two use cases to illustrate how the information about the patterns can be used.en_US
dc.description.seriesinformationEuroVAST 2010: International Symposium on Visual Analytics Science and Technologyen_US
dc.identifier.isbn978-3-905673-74-6en_US
dc.identifier.urihttps://doi.org/10.2312/PE/EuroVAST/EuroVAST10/045-050en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation-Visualizationen_US
dc.titleCombining Details of the Chi-Square Goodness-of-Fit Test with Multivariate Data Visualizationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
045-050.pdf
Size:
353.55 KB
Format:
Adobe Portable Document Format
Collections