SOAR: Stochastic Optimization for Affine global point set Registration

dc.contributor.authorAgus, Marcoen_US
dc.contributor.authorGobbetti, Enricoen_US
dc.contributor.authorVillanueva, Alberto Jaspeen_US
dc.contributor.authorMura, Claudioen_US
dc.contributor.authorPajarola, Renatoen_US
dc.contributor.editorJan Bender and Arjan Kuijper and Tatiana von Landesberger and Holger Theisel and Philipp Urbanen_US
dc.date.accessioned2014-12-16T07:26:38Z
dc.date.available2014-12-16T07:26:38Z
dc.date.issued2014en_US
dc.description.abstractWe introduce a stochastic algorithm for pairwise affine registration of partially overlapping 3D point clouds with unknown point correspondences. The algorithm recovers the globally optimal scale, rotation, and translation alignment parameters and is applicable in a variety of difficult settings, including very sparse, noisy, and outlierridden datasets that do not permit the computation of local descriptors. The technique is based on a stochastic approach for the global optimization of an alignment error function robust to noise and resistant to outliers. At each optimization step, it alternates between stochastically visiting a generalized BSP-tree representation of the current solution landscape to select a promising transformation, finding point-to-point correspondences using a GPU-accelerated technique, and incorporating new error values in the BSP tree. In contrast to previous work, instead of simply constructing the tree by guided random sampling, we exploit the problem structure through a low-cost local minimization process based on analytically solving absolute orientation problems using the current correspondences. We demonstrate the quality and performance of our method on a variety of large point sets with different scales, resolutions, and noise characteristics.en_US
dc.description.seriesinformationVision, Modeling & Visualizationen_US
dc.identifier.isbn978-3-905674-74-3en_US
dc.identifier.urihttps://doi.org/10.2312/vmv.20141282en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectGeometric algorithmsen_US
dc.subjectlanguagesen_US
dc.subjectand systemsen_US
dc.titleSOAR: Stochastic Optimization for Affine global point set Registrationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
103-110.pdf
Size:
8.49 MB
Format:
Adobe Portable Document Format
Collections