Coherent Culling and Shading for Large Molecular Dynamics Visualization

dc.contributor.authorGrottel, Sebastianen_US
dc.contributor.authorReina, Guidoen_US
dc.contributor.authorDachsbacher, Carstenen_US
dc.contributor.authorErtl, Thomasen_US
dc.contributor.editorG. Melancon, T. Munzner, and D. Weiskopfen_US
dc.date.accessioned2014-02-21T20:06:01Z
dc.date.available2014-02-21T20:06:01Z
dc.date.issued2010en_US
dc.description.abstractMolecular dynamics simulations are a principal tool for studying molecular systems. Such simulations are used to investigate molecular structure, dynamics, and thermodynamical properties, as well as a replacement for, or complement to, costly and dangerous experiments. With the increasing availability of computational power the resulting data sets are becoming increasingly larger, and benchmarks indicate that the interactive visualization on desktop computers poses a challenge when rendering substantially more than millions of glyphs. Trading visual quality for rendering performance is a common approach when interactivity has to be guaranteed. In this paper we address both problems and present a method for high-quality visualization of massive molecular dynamics data sets. We employ several optimization strategies on different levels of granularity, such as data quantization, data caching in video memory, and a two-level occlusion culling strategy: coarse culling via hardware occlusion queries and a vertex-level culling using maximum depth mipmaps. To ensure optimal image quality we employ GPU raycasting and deferred shading with smooth normal vector generation. We demonstrate that our method allows us to interactively render data sets containing tens of millions of high-quality glyphs.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume29en_US
dc.identifier.doi10.1111/j.1467-8659.2009.01698.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2009.01698.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleCoherent Culling and Shading for Large Molecular Dynamics Visualizationen_US
Files