SHREC'12 Track: 3D Mesh Segmentation

dc.contributor.authorLavoué, G.en_US
dc.contributor.authorVandeborre, J-P.en_US
dc.contributor.authorBenhabiles, H.en_US
dc.contributor.authorDaoudi, M.en_US
dc.contributor.authorHuebner, K.en_US
dc.contributor.authorMortara, M.en_US
dc.contributor.authorSpagnuolo, M.en_US
dc.contributor.editorM. Spagnuolo and M. Bronstein and A. Bronstein and A. Ferreiraen_US
dc.date.accessioned2013-09-24T10:53:08Z
dc.date.available2013-09-24T10:53:08Z
dc.date.issued2012en_US
dc.description.abstract3D mesh segmentation is a fundamental process in many applications such as shape retrieval, compression, deformation, etc. The objective of this track is to evaluate the performance of recent segmentation methods using a ground-truth corpus and an accurate similarity metric. The ground-truth corpus is composed of 28 watertight models, grouped in five classes (animal, furniture, hand, human and bust) and each associated with 4 ground-truth segmentations done by human subjects. 3 research groups have participated to this track, the accuracy of their segmentation algorithms have been evaluated and compared with 4 other state-of-the-art methods.en_US
dc.description.sectionheadersSHREC Sessionen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrievalen_US
dc.identifier.isbn978-3-905674-36-1en_US
dc.identifier.issn1997-0463en_US
dc.identifier.urihttps://doi.org/10.2312/3DOR/3DOR12/093-099en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling- I.2.10 [Artificial intelligence]: Vision and Scene Understanding-Shapeen_US
dc.titleSHREC'12 Track: 3D Mesh Segmentationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
093-099.pdf
Size:
566.93 KB
Format:
Adobe Portable Document Format
Collections