Latent Motion Manifold with Sequential Auto-Encoders

Loading...
Thumbnail Image
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We propose the sequential autoencoders for constructing latent motion manifold. Sequential autoencoders minimize the difference between the ground truth motion space distribution and reconstructed motion space distribution sampled from the latent motion manifold. Our method is based on sequence-to-sequence model for encoding the temporal information of human motion. We also adopt Wasserstein regularizer for matching encoded training distribution to the prior distribution of motion manifold. Our experiments show that randomly sampled points from trained motion manifold distribution become natural and valid motions.
Description

        
@inproceedings{
10.2312:sca.20181184
, booktitle = {
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation - Posters
}, editor = {
Skouras, Melina
}, title = {{
Latent Motion Manifold with Sequential Auto-Encoders
}}, author = {
Jang, Deok-Kyeong
and
Lee, Sung-Hee
}, year = {
2018
}, publisher = {
The Eurographics Association
}, ISSN = {
1727-5288
}, ISBN = {
978-3-03868-070-3
}, DOI = {
10.2312/sca.20181184
} }
Citation
Collections