Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

Loading...
Thumbnail Image
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
Most non-photorealistic rendering (NPR) methods for line drawing synthesis operate on a static shape. They are not tailored to process animated 3D models due to extensive per-frame parameter tuning needed to achieve the intended look and natural transition. This paper introduces a framework for interactive line drawing synthesis from animated 3D models based on a learned style space for drawing representation and interpolation. We refer to style as the relationship between stroke placement in a line drawing and its corresponding geometric properties. Starting from a given sequence of an animated 3D character, a user creates drawings for a set of keyframes. Our system embeds the raster drawings into a latent style space after they are disentangled from the underlying geometry. By traversing the latent space, our system enables a smooth transition between the input keyframes. The user may also edit, add, or remove the keyframes interactively, similar to a typical keyframe-based workflow. We implement our system with deep neural networks trained on synthetic line drawings produced by a combination of NPR methods. Our drawing-specific supervision and optimization-based embedding mechanism allow generalization from NPR line drawings to user-created drawings during run time. Experiments show that our approach generates high-quality line drawing animations while allowing interactive control of the drawing style across frames.
Description

CCS Concepts: Computing methodologies → Non-photorealistic rendering; Animation; Learning latent representations

        
@inproceedings{
10.2312:pg.20221237
, booktitle = {
Pacific Graphics Short Papers, Posters, and Work-in-Progress Papers
}, editor = {
Yang, Yin
and
Parakkat, Amal D.
and
Deng, Bailin
and
Noh, Seung-Tak
}, title = {{
Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
}}, author = {
Wang, Zeyu
and
Wang, Tuanfeng Y.
and
Dorsey, Julie
}, year = {
2022
}, publisher = {
The Eurographics Association
}, ISBN = {
978-3-03868-190-8
}, DOI = {
10.2312/pg.20221237
} }
Citation