Isosurfaces on Optimal Regular Samples

dc.contributor.authorCarr, Hamishen_US
dc.contributor.authorTheußl, Thomasen_US
dc.contributor.authorMöller, Torstenen_US
dc.contributor.editorG.-P. Bonneau and S. Hahmann and C. D. Hansenen_US
dc.date.accessioned2014-01-30T07:36:31Z
dc.date.available2014-01-30T07:36:31Z
dc.date.issued2003en_US
dc.description.abstractVolumetric samples on Cartesian lattices are less efficient than samples on body-centred cubic (BCC) lattices. We show how to construct isosurfaces on BCC lattices using several different algorithms. Since the mesh that arises from BCC lattices involves a large number of cells, we show two alternate methods of reducing the number of cells by clumping tetrahedra into either octahedra or hexahedra. We also propose a theoretical model for estimating triangle counts for various algorithms, and present experimental results to show that isosurfaces generated using one of our algorithms can be competitive with isosurfaces generated using Marching Cubes on similar Cartesian gridsen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US
dc.identifier.isbn3-905673-01-0en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttps://doi.org/10.2312/VisSym/VisSym03/039-048en_US
dc.publisherThe Eurographics Associationen_US
dc.titleIsosurfaces on Optimal Regular Samplesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
039-048.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format